
ar
X

iv
:c

on
d-

m
at

/0
20

62
22

 v
2 

  5
 J

ul
 2

00
2

BUBBLES, CRASHES AND
INTERMITTENCY IN AGENT

BASED MARKET MODELS

Irene Giardina1,2 and Jean-Philippe Bouchaud3,4
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Abstract

We define and study a rather complex market model, inspired from the
Santa Fe artificial market and the Minority Game. Agents have different

strategies among which they can choose, according to their relative prof-
itability, with the possibility of not participating to the market. The price

is updated according to the excess demand, and the wealth of the agents is
properly accounted for. Only two parameters play a significant role: one

describes the impact of trading on the price, and the other describes the
propensity of agents to be trend following or contrarian. We observe three

different regimes, depending on the value of these two parameters: an oscil-
lating phase with bubbles and crashes, an intermittent phase and a stable
‘rational’ market phase. The statistics of price changes in the intermittent

phase resembles that of real price changes, with small linear correlations,
fat tails and long range volatility clustering. We discuss how the time de-

pendence of these two parameters spontaneously drives the system in the
intermittent region. We analyze quantitatively the temporal correlation of

activity in the intermittent phase, and show that the ‘random time strat-
egy shift’ mechanism that we proposed earlier allows one to understand

the observed long ranged correlations. Other mechanisms leading to long
ranged correlations are also reviewed. We discuss several other issues, such
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as the formation of bubbles and crashes, the influence of transaction costs

and the distribution of agents wealth.
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1 Introduction

It is now well known that the statistics of price changes in financial markets
exhibit interesting ‘stylized facts’, which are to some extent universal, i.e. inde-
pendent of the type of market (stocks, currencies, interest rates, etc.) and of the
epoch [1, 2, 3, 4]. Price changes are in a good approximation uncorrelated beyond
a time scale of the order of tens of minutes (on liquid markets). Their distribu-
tion is strongly non Gaussian: they can be characterized by Pareto (power-law)
tails with an exponent in the range 3 − 5. Another striking feature is the inter-
mittent nature of the fluctuations: localized outbursts of the volatility, i.e. the
amplitude of the price fluctuations (averaged over a given time interval), can be
identified. This fact, known as volatility clustering [5, 6, 2, 3], can be analyzed
more quantitatively: the temporal correlation function of the daily volatility σt
can be fitted by an inverse power of the lag τ , with a rather small exponent in
the range 0.1 − 0.3 [6, 7, 8, 9, 10]. This suggests that there is no characteristic
time scale for volatility fluctuations: outbursts of market activity can persist for
short times (a few hours), but also for much longer times, months or even years.
The slow decay of the volatility correlation function leads to a multifractal-like
behaviour of price changes [11, 12, 13, 10, 14], and has important consequences
for option pricing. Other stylized facts have been reported, such as the leverage
effect that leads to skewed distribution of price changes [15], or the apparent
increase of inter-stock correlations in volatile periods.

It is now very clear to many that these features are very difficult to explain
within the traditional framework of ‘rational expectations’, where all agents share
the same information, have an infinite computation power and act in a perfectly
rational way (see e.g the clear discussion in the introduction of refs. [16, 17]
and in [18]). Another route, much less formalized and still very much in an
exploratory stage, is followed by an increasing number of academics. The aim is to
assume as little as possible about agents preferences and abilities, and to explore
generic classes of models, with the hope of finding some plausible mechanisms that
reproduce at least part of the stylized facts recalled above. In this endeavor, one
should not be constrained by preexisting prejudices or established frameworks.
The ‘grand unification’ of different mechanisms which would lead in fine to a
logically consistent and simultaneous understanding of all the empirical facts is
deferred to later times. Similarly, it is premature to ask for rigorous proofs, but
leave space for hand waving arguments and numerical simulations.

In this paper, we report [19] the results of an artificial market that bears
some similarities with many previous attempts [20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. Although the detailed behaviour of our
artificial market depends on the value of the different parameters entering the
model, only a few market typologies are identified, and some qualitative features
(such as the long range volatility correlations) are robust to parameter changes,
at least in some regions of parameter space. We explain in particular that the
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general mechanism proposed in [39] is indeed responsible for volatility clustering
in our model. We also discuss, in this context, other agent based models proposed
so far in which this phenomenon has been observed. We identify several other
interesting features (appearance of bubbles and crashes, influence of the price
fixing procedure and of wealth constraints, of transaction costs, etc.) that may
be of some relevance to real markets.

In our model, we have not included herding, or imitation effects. Each agent
acts independently of other agents. The correlations between their actions is
entirely mediated by the price history itself. Direct herding might also be im-
portant to account for the phenomenology of real markets (see [40, 41, 29, 42]
and references therein). We leave to a future study the extension of the present
model to account for these herding effects.

The aftermath of our study (and of all other similar studies) is the following
paradox: in order to get a ‘good looking’ price chart, one has to tune quite a bit
the important parameters of the model. What are the mechanisms tuning the
parameters in real markets to make them look all alike ? There must be some
generic self-organization mechanisms responsible for this selection. We discuss in
section 6.1, in view of our results, what could be the ‘evolutionary’ driving forces
relevant for this fundamental issue.

2 Set up of the model

2.1 Basic ingredients

In line with the original idea of the Santa Fe artificial market [21, 22], which was
later simplified and popularized as the Minority Game (mg) [24, 43, 30, 44, 45],
in our model agents do not follow a rational expectation paradigm but rather
act inductively, adapting their behaviour to their past experience. As in the mg
each agent has a certain fixed number of strategies, each of which converts some
information into a decision. We will assume a world where there are only two
tradable assets: a stock, with fluctuating price, and a bond, yielding a certain
(known) risk free rate ρ. The information on which the agents decide their action
will be the past history of the price itself. The decision is to buy stocks (converting
bonds in cash), to sell stocks, or to be inactive (i.e. to hold bonds). Each strategy
is given a score, which is updated according to its performance. The strategy
played at time t by a given agent is the one, among those available to him, which
would have best performed in a recent past. We take proper account of the
wealth balance of each agent, and proper market clearing (i.e matching supply
and demand) is enforced.
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2.2 Notations and definitions

Each agent i, i ∈ {1, ..., N} has S − 1 active strategies plus an inactive one. He
owns, at time t, a number φi(t) of stocks and Bi(t) of bonds. The price of the
stock is X(t), and therefore the total wealth of agent i is Bi(t) + φi(t)X(t). The
dynamics of the model, between t and t + 1, is defined by the following set of
rules:

• Information:

We assume that all agents rely on the same information It, given by the m
last steps of the past history of the return time series (m is for ‘memory’).
We choose the information to be qualitative and to only depend on the sign
of the previous price changes:

It = {χ(t−m), · · · , χ(t− 1)} χ(t) = sign

[
log(

X(t)

X(t− 1)
)− ρ

]
. (1)

In this sense, our traders are ‘chartists’ on short time scales, and take their
decision based on the past pattern of price changes. (We will add below
the possibility for the agents not to follow their systematic strategies, and
act as ‘fundamental’ traders if the price is too far from a reference value,
or even act at random).

A comment on the value of the time scale ‘1’ is in order here. Clearly,
different agents observe the price time series on different time scales, from
several minutes for intra day traders to months for long term pension funds.
Here, we assume for simplicity that all agents coarse-grain the price time
series using the same clock, and consider as meaningful price variations on
– say – a day or a week. All the parameters below were chosen such as
one time step roughly corresponds to a week of trading. One interesting
outcome of our model is that even if all agents have the same intrinsic clock,
a broad range of time scales is spontaneously generated.

• Strategies:

Each agent i is endowed with a certain number S of fixed strategies, that
convert information It into decision εi(It) = ±1, 0 (buy, sell, inactive). For
example, a ‘trend following’ strategy could be to choose εi = 1 as soon as
there is a majority of +’s in the signal It. Another example is the inactive
strategy, for which εi ≡ 0, ∀I.

Each agent is given the possibility to remain inactive, i.e. has an inactive
strategy. The S − 1 other strategies are chosen at random in the space of
all strategies (there are 22m of them), in order to model heterogeneity in the
agents capabilities. One can however give a bias to this random choice, and
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favor ‘trend following’ or ‘contrarian’ strategies. This is done by defining
the ‘magnetization’ M ∈ [−1, 1] of the string χ(1), · · · , χ(m), defined as:

M =
1

m

m∑

j=1

χ(j), (2)

and choose the corresponding decision to be ε = +1 with probability (1 +
PM)/2 and ε = −1 with probability (1 − PM)/2. The parameter P ∈
[−1, 1] can be called the ‘polarization’ of the strategies. If P = 1, trend
following strategies are favored, whereas P = −1 corresponds to contrarian
strategies. The choice P = 0 is means no bias in the strategy space.

• Decision and buy orders:

Knowing the strategy used by agent i and the information It allows one to
compute the decision εi(t) of each agent. Depending on the value of εi(t),
the agent buys/sells a quantity qi(t) proportional to his current belongings.
More precisely, we set:

qi(t) = g
Bi(t)

X(t)
for εi(t) = +1

qi(t) = −gφi(t) for εi(t) = −1

qi(t) = 0 for εi(t) = 0. (3)

This means that we consider ‘prudent’ investors who change their positions
progressively: only a fraction g of the cash is invested in stock between t
and t+ 1 if the signal is to buy, and the same fraction g of stock is sold if
the signal is to sell. Typical values used below are g ∼ 1%.

The normalized total order imbalance, which will be used to determine the
change of price, is denoted Q(t):

Q(t) =
1

Φ

N∑

i=1

qi(t) = Q+(t)−Q−(t), (4)

where Φ is the total number of outstanding shares (that we assume to be
constant), Q+ is the fractional volume of buy orders and Q− the fractional
volume of sell orders.

Agents sometimes choose to abandon their ‘chartist’ strategies when the
price reaches levels that they feel unreasonable: when the price is too high,
they are likely to sell, and vice versa. More precisely, we construct a long
term average of past returns as:

r(t) =
1

1 − α
∑

t′<t

αt−t
′−1 r(t′) r(t′) = log

(
X(t′ + 1)

X(t′)

)
, (5)
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where α < 1 defines the time scale T0 = 1/ log(1/α) over which the aver-
aging is done, and r(t) is the instantaneous stock return. When r is larger
than a certain reference return ρ0, related to economy fundamentals, the
stock can be deemed as overvalued and ‘fundamentalists’ will sell (εi = −1).
Conversely, if r < ρ0, the stock is possibly undervalued, and εi = +1. We
model the occurrence of fundamental trading as stochastic, by assigning
a certain probability pf for every agent to follow a fundamental strategy
rather than a technical (chartist) strategy. We want pf to increase with
|r − ρ0|, and have chosen the following simple relation:

pf = min

(
1, f
|r − ρ0|
ρ0

)
, (6)

where f is a certain parameter describing the confidence of agents in fun-
damental information. Since pf increases when the price goes up too fast,
fundamentalists have a stabilizing role and give to the price a mean revert-
ing component. In the following, we will assume that on the long run, the
overall economy growth ρ0 and the interest rate ρ are equal, and impose
ρ0 = ρ, although in practice the two fluctuate with respect to each other.

In the above rule, we have again assumed that all agents use the same time
scale to determine the past average trend. This is probably very far from
reality, where one expects that this time scale could be very different for
different agents.

Finally, it can be useful to consider the influence of ‘irrational’ traders, who
take their decisions on the basis of random coin tossing only. We define pi
as the probability for an agent to take a random decision. In this case, the
probability to be a fundamentalist is (1 − pi)pf .

• Price formation and market clearing mechanism:

Once the aggregate order imbalance Q(t) is known, we update the price
following a simple linear rule [20, 21, 26, 41, 27]:

r(t) = log

(
X(t+ 1)

X(t)

)
' X(t + 1)

X(t)
− 1 =

Q(t)

λ
, (7)

where λ is a measure of the ‘stiffness’ of the market. There has been recent
empirical studies of this relation, which was shown to hold for individual
stocks for small enough Q, on a sufficiently large time interval [47]. For
larger order imbalance, the price response appears to bend downward, a
possible consequence of the structure of the order books. We have included
this effect, with no noticeable effect on the qualitative results presented
below.
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From a more microscopic point of view, i.e. on time scales smaller than
the time unit that we have chosen, agents place orders of different types
in the market: market orders and limit orders. Market orders allows the
order to be executed with certainty, but at the current market price. Limit
orders ensures a maximum price for buy orders (and a minimum price for
sell orders) but can be unexecuted, or only partially executed, depending
on the history of the price. Therefore, in general, the order put down by an
agent will be only partially filled. We assume that the fraction of unfulfilled
orders is the same for all agents. Market clearing is then ensured by the
following rule: the global amount of sell orders is Q−(t), and the total
number of shares that can be bought at price X(t + 1) is:

Q̃+(t) = Q+(t)
X(t)

X(t+ 1)
. (8)

The fraction of filled buy orders ϕ+ (resp. filled sell orders ϕ−) is therefore:

ϕ+ = min

(
1,
Q−

Q̃+

)
ϕ− = min

(
1,
Q̃+

Q−

)
. (9)

From these quantities, one determines the actual number of shares δφi
bought or sold by agent i:

δφi(t) = gϕ+
Bi(t)

X(t+ 1)
for εi(t) > 0

δφi(t) = −gϕ−φi(t) for εi(t) < 0 (10)

• Wealth dynamics:

We now have all the ingredients to update the number of stocks and bonds
of agent i, i.e.:

φi(t+ 1) = φi(t) + δφi(t)

Bi(t+ 1) = Bi(t)(1 + ρ) − δφi(t)X(t+ 1), (11)

where the last line adds the interest gained on the bonds between t and t+1
to the cash need to finance new stocks, or gained through stock selling. Note
that there is an injection of wealth due to the positive interest rate ρ. We
will discuss this further in the following.

• Update of the scores:

Each agent assigns scores to his strategies to measure their performance and
uses at time t the best strategy, i.e. the one with highest scores. We need
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now to specify how the scores of the different strategies are updated. The
score of the αth strategy of agent i at time t is denoted Sαi (t), whereas the
decision associated to this strategy when the available information at time t
is It is εαi (It). When the agent i decides at time t to trade, the price at which
the trade takes place is X(t+1). Therefore, the virtual profit he makes due
to this trade is only known at time t+ 2 and is εαi (It)[X(t+ 2)−X(t+ 1)].
We choose to update the score of the active strategies proportionally to the
relative profit, corrected by the interest rate 1:

Sαi (t+ 1) = (1− β)Sαi (t) + βεαi (It−1)[r(t)− ρ], α = 1, ..., S − 1, (12)

whereas the score of the inactive strategy is identically zero. The parameter
β ≤ 1 defines a memory time: the performance of the strategies is only
computed using the recent part of the history. Note that the update of the
scores is not weighted by the actual transaction volume: good decisions are
valued independently of the current wealth of the agent. Therefore, the
score of the strategy is not proportional to the actual profit and loss curve.

One should keep in mind that only the best strategy α∗(t) is played by the
agent at time t. Nevertheless, he updates the scores of all strategies as if
they had been played. In other words, market impact is neglected here,
since the very fact of using a given strategy influences the price itself. The
history of the price would have been different if a different strategy had been
played. We do not take into account the market impact for two reasons:
first, the update of the score is delayed as compared to the action itself
(see Eq. (12)) – therefore, the main source of systematic bias discussed in
the context of the Minority Game in, e.g. [46], is removed. Second, market
impact is in practice very hard to estimate for traders themselves (although
some recent studies start addressing this issue [47, 48, 49]), and strategies
are often backtested under the assumption that the market impact is small.

A related point is that of the virtual profit computed above. Taking profit
means closing one’s position, at a price that is not known in advance. Again
there will be some market impact and the actual price of the transaction is
on average less than the current price. This effect is well known to active
market participants and, as mentioned above, has been recently the subject
of some studies. A way to model this is to add a transaction cost to the
above update of the score, independent of whether one buys or sells. (This
cost should also be taken into account in the above wealth balance).

2.3 Summary of the parameters and main results

The model contains a rather large number of parameters: the interest rate ρ, the
memory length used for technical trading m, the ‘polarization’ of strategies P , the

1A similar rule for the update of scores was recently considered in [38]
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Figure 1: Typical price charts in the three regimes: periodic, intermittent, stable
(efficient). The parameters are: S = 3, m = 5, g = 0.005, f = 0.05, N = 1001,
1 − β = 10−2 and 1 − α = 10−4. The top graph corresponds to g/λ = 0.1, the
two bottom graphs to g/λ = 0.6.

fraction of invested wealth g, the time scale used to trigger fundamental trading
α, the propensity of fundamental trading f and the fraction of irrational agents
pi, the stiffness of the market λ, and the memory time of agents when the score
of the strategies are updated β. However, the only truly important parameters
are g/λ and the polarization P , which determine the qualitative behaviour of
price changes. The other parameters influence the quantitative results, but not
the qualitative features, which is the appearance of three qualitatively different
regimes (see Fig. 1):

• An Oscillatory Regime, corresponding to ‘weak coupling’: g/λ
<∼ 0.4, and

P ≥ 0, where speculative bubbles are formed, and finally collapse in sudden
crashes induced by the fundamentalist behaviour. In this regime, markets
are not efficient, and a large fraction of the orders is (on average) unfulfilled.

• A Turbulent regime (g/λ
>∼ 0.4, P ≥ −|P0|) where the ‘stylized’ facts of

liquid markets are well reproduced: the market is efficient (although some
persistent or antipersistent correlations survive), the returns follow a power
law distribution, and volatility clustering is present.
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Figure 2: Phase diagram of the model. The region g/λ > 0.4, P � 1 corresponds
to an intermittent regime, with small linear correlations but strong volatility
fluctuations. The dashed lines correspond to crossover regions, where a mixed
behaviour is observed.

• A Stable regime, which arises if the polarization P is sufficiently negative
(predominance of contrarian strategies). In this case, the fluctuations of the
price are mild and mean reverting (see Fig. 1 c), as one would expect in a
‘rational market’ where the trading price is always close to the fundamental
price.

A (rather schematic) phase diagram of the model in the plane (g/λ, P ) for a
fixed value of all the other parameters is shown in Fig. 2. This qualitative phase
diagram is the central result of our study.

3 Kinematics of the model: fully random strate-

gies

Before embarking to analyze the influence of strategies, it is important to calibrate
the bare version of our model where agents take purely random, uncorrelated
decisions at each instant of time. In this case, the price fluctuations will only
reflect the wealth constraints. We show in Fig. 3 the price chart for some values of
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Figure 3: Behaviour of the price as a function of time for purely random strategies.
Inset: Variogram of the price fluctuations, and Ornstein-Uhlenbeck fit.

the parameters. The log-price performs a mean reverting random walk around the
fundamental price Xf (t) = exp(ρt). In the inset we show the log-price variogram,
defined as:

V(τ ) =

〈(
log

X(t+ τ )

X(t)
− ρτ

)2〉
, (13)

together with an Ornstein-Uhlenbeck fit:

V(τ ) = V∞ (1 − exp(−τ/τ0)) , (14)

that describes a mean reverting random walk with a reverting time τ0, and mean
square excursion from the mean equal to V∞. For small τ , the behaviour of V(τ )
is linear in τ , as for a free random walk, indicating that random trading leads,
as expected, to unpredictable price changes. However, on larger time scales, the
limitation of wealth and of stocks (agents cannot borrow nor short sell stocks)
prevents the price from wandering infinitely far from the fundamental price, and
leads to a mean-reverting behaviour. This mechanism will also operate for more
complicated trading rules and will be discussed again in section 5.

It is simple to understand how these quantities depend on the parameters
g, λ. From the price fixing mechanism, one can write a Langevin equation for the
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price that reads:

r(t) =
d logX

dt
=

g

2λφ

(
B(t)

X
− φ+ ξ(t)

)
, (15)

where B(t) is the average of an agent wealth in bonds, φ the average number of
stocks per agent, and ξ is a random binomial variable measuring the small offset
from a perfect 50-50 division between buyers and sellers. The variance of ξ(t) is
therefore of order N−1. Equation (15) indeed describes a mean reverting process
around B(t): when the price is too high, the demand goes down due to budget
constraints and the price goes down, and vice-versa. The long term increase of
price is only due, in our model, to the continuous injection of cash through the
interest rate.

Eq. (15) defines a mean reverting process, that allows one to obtain in par-
ticular:

τ0 ∝
λφ

g
V∞ ∝

g

Nλφ
, (16)

in agreement with numerical results. The short time volatility of the market, for
τ � τ0, is given by σ2 = V∞/τ0 ∝ g2/Nλ2φ2, and is small for ‘stiffer’ markets, or
if the fraction of invested wealth is smaller, as expected. Also, the volatility de-
creases when the number of agents increases. For a market with 104 participants
such that g = 10%, this formula gives a reasonable volatility of 1% per week,
when the market stiffness is λ ∼ 0.1. However, in this case, the return time is
also of the order of a week and the total variability of prices is 1%, both being
far too small compared to reality.

Let us finally note that from the simulations, the market liquidity, measured
as the fraction c of fulfilled orders, improves when the market stiffness λ decreases.
For example, we find c = 0.9 for g = 1%, λ = 1, and c = 0.98 for g = 1%, λ = 0.1.

4 The oscillatory regime

This regime is characterized by the presence of regular bubbles followed by rapid
‘crashes’. The period of the bubbles is a function of the model parameters. In
Fig. 4 we show the dependence of the period on g/λ, for some fixed values of the
other parameters. The period decreases as g/λ increases, and vanishes when the
market enters the turbulent regime. On the same plot, we have also shown the
fraction c of fulfilled orders, which is very low in the periodic phase and increases
with g/λ.

4.1 A qualitative discussion

We want to understand the mechanism underlying the creation and persistence
of bubbles, and their final collapse.
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Figure 4: Period T of the oscillations (open circles, left scale), and fraction c
of fulfilled orders (black squares, right scale), as a function of g/λ. All other
parameters are as in Fig. 1.
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To answer this question, one has to look back at Eq. (7) that describes the
price dynamics. Since the strategies are randomly distributed among agents, we
can expect that at the beginning of the game one half of the agents is willing to
buy and the other half to sell. The price increment is therefore r = δX/X ∼
gλ−1N/(2Φ)[B/X − Φ]. Since in general B/X 6= Φ, the price rises or decreases.
Suppose that the initial conditions are such that it increases. If g/λ is small, both
the wealth and number of shares of the agents change quite slowly, and therefore
B/X−Φ will keep a constant sign for a while. This will generate a history of price
of the form .., 1, 1, 1, 1, 1.... (See eq. (1)). This is the initial stage of the bubble.
Now, the population of agents fall into two categories: those who have at least
one strategy such that .., 1, 1, 1, 1, 1 sends a buy signal, and those who do not have
such a strategy available. The buy-strategies keep being rewarded, while the sell
ones keep loosing points: agents who can buy will continue buying, while agents
who cannot will soon become inactive since all active strategies have a negative
score. In this way the bubble is self-sustained and the price keeps increasing.
This ‘majority’ mechanism was discussed in the context of the Minority Game in
[36, 38]. However, the buying power of the buyers decreases, because the price
increases and the available cash decreases. Hence, the relative return of the stock
over the risk-free rate diminishes, and the score of the buying strategies only
become marginally positive (because the initial large gains are forgotten, only
the recent past is included in the calculation of the scores). Since the return
exceeds the reference rate ρ0, a certain fraction of agents become fundamentalist
and act contrarily to the main trend, i.e. sell. As soon as their action is such that
the price drops, the history will change to .., 1, 1, 1, 1,−1. At this point, one half
of the active agents still receive a buy signal, but the other half receive a sell signal
(since strategies are random, and for now unbiased – P = 0). Now, these selling
agents have a lot of stocks, since they have been buying for a long time, whereas
the still buying agents have a poor buying power. This obviously results in a
series of −1, and an ‘anti-bubble’ is created. This anti-bubble has a large initial
negative slope because the system starts in a highly unbalanced state. There is
no symmetry between a bubble and an antibubble because of the presence of a
non zero interest rate, which is a source of cash and favors, on average, positive
trends. Once again, it is the presence of fundamentalist agents which at some
point triggers the end of the descending trend, and re-establish a bubble. The
precise time at which the bubble collapses is random, and the way the collapse
is triggered is very similar to a nucleation process (see next subsection).

One interesting quantity is the fraction of fulfilled orders. In the oscillating
regime, one understands from the above arguments that the unbalance between
buy orders and sell orders is in general very large, leading to great amount of
unfulfilled orders. The fraction c of fulfilled orders increases with g/λ: see Fig. 4.
As will be discussed below, this is a driving force to escape from this oscillating
regime, which obviously does not look at all like real markets.

The effect of the polarization P , which can be appreciated in the phase di-
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agram of Fig. 2, is quite easy to understand in the light of this microscopic
analysis: a positive value of P increases the average number of trend followers
and therefore is almost irrelevant for the bubble dynamics which is based on an
endogenous trend following behaviour. On the other hand P < 0 acts contrarily
to the bubble creation forcing a percentage of agents to act against the trend. In-
terestingly enough, as it can be seen from the phase diagram, even a small P < 0
is able to prevent the appearance of a bubble. As a function of |P |, the transition
between an oscillating behaviour and a stable behaviour is first-order like, in the
sense that the period of the oscillation is still finite when the transition occurs.

The above mechanism also allows us to understand the role of the parame-
ters f or the fraction of irrational agents pi. The numerical simulations indicate
that increasing the value of these parameters may at first stabilize the oscillating
phase, while one would intuitively expect an opposite behaviour since fundamen-
talists/irrational players reduce the relative number of trend followers. This effect
can be explained in the following way. We have seen that, as the price increases
during the bubble, the available cash of active players and therefore their buying
power decreases bringing the bubble to saturation. However, each active agent
has a certain probability proportional to f to become a fundamentalist and sell,
increasing his wealth in cash. The buying pressure can then stay higher for a
longer period of time, determining more stable bubbles. Of course, as f increases
substantially, its other effect of nucleating opposite trends becomes the most im-
portant one, and the system behaves much as if the polarization parameter P
was strongly negative, and thus prevents the appearance of bubbles. Finally, the
presence of irrational agents who buy or sell randomly, and therefore statistically
drop out of the order imbalance, can be seen as reducing the effective value of
g, and thus – somewhat surprisingly – stabilizing the oscillating regime. We now
turn to a mathematical transcription of the above discussion, that allows us to
characterize more accurately the shape of the bubbles in our model.

Note finally that the oscillating regime tends to die out for very long times.
This is due to the fact that agents that have a buying strategy during the bubble
tend to underperform on the long run. Their wealth is, at long times, insufficient
to sustain the bubble. In order to determine the oscillation period more precisely,
we have artificially given to each agent both its initial strategy and its perfect
mirror image. This prevents the appearance of two groups with systematically
different wealths, without changing the basic mechanism leading to bubbles and
crashes.

4.2 A mean-field description

In this section we try to describe the bubble-crash dynamics by means of some
mean-field equations. As we shall see, this will enable us to understand the precise
mechanism of the bubble saturation and the consequent crash occurrence.

We start by defining the relevant mean-field variables: the average amount B
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of bonds and the average stock amount φ hold by active agents. It is also useful
to define the number of buyers/sellers Nb, Ns.

Our aim is to write some evolution equations for these average quantities and
for the price. In the following we shall consider the continuous time limit of
equations (7), (11) and (5). We have:

r(t) =
d logX

dt
=

1

λ
Q(t) (17)

r(t) =
1

T0

∫ t

0
dτ exp(−t− τ

T0
) r(τ ), (18)

where T0 = 1/ ln(1/α) (see eq. (5)). On the other hand the precise expression of
the global action Q(t) as well as the wealths dynamics is not the same during the
whole bubble-crash cycle and to write down appropriate equations it is necessary
to distinguish different regimes where the agents behaviour can be considered as
homogeneous in time. In general we can assume that during the bubble all the
active players are buyers, except for a small percentage of fundamentalists who
start selling when the price increases too much. On the contrary, during the crash
all active agents become sellers while the fundamentalists will eventually act as
buyers. In the following, we shall consider the case where the parameters g/λ
and f are very small.

4.2.1 Beginning of the bubble: r(t) < ρ

At the beginning of the bubble the price starts increasing but is still lower than the
fundamental reference value exp(ρt). This implies that all active agents, including
the fundamentalists, are buyers. The total number of buyers is therefore given by
all the agents who have at least one buying strategy, plus a stochastic contribution
given by the fundamentalists:

Nb = N(1 − 1

2s
) +

N

2s
pf , (19)

where s = S − 1. On the other hand, the active sellers rapidly disappear as
the score of the corresponding strategy deteriorates. The price rises without
transaction, but since g/λ is small, it does so rather slowly. since all players who
have not a buying strategy prefer to remain inactive. In this context, it is evident
that no transaction can be realized at all since there is a complete unbalance
between offer and demand, and the parameter ϕ+, which determines the fraction
of fulfilled orders, is therefore identically zero. The evolution equations are in
this case very simple (see eq. (7)(11)):

r(t) =
g

λ
Nb

B

ΦX
(20)
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and:
dB

dt
= ρB

dφ

dt
= 0 (21)

The initial rate of growth of the bubble r0 is therefore given by:

r0 ≈
g

λ

B0N

X0Φ
(1− 1

2s
), (22)

where B0 = B(t = t0) and X0 = X(t = t0), and t0 is the start date of the bubble.
This gives a good approximation, as can be seen from Fig. 5. Since the value of
X0 just after the crash is small, the buying power is high and r0 is much larger
than ρ. The value of r(t) therefore steadily increases.

4.2.2 Saturation of the bubble: r(t) > ρ

In this regime the fundamentalist players start acting contrarily to the main trend
and take their profit, thereby reestablishing some trading activity. We now have:

Nb = N(1− 1

2s
)(1− pf ) Ns = Npf (23)

and the return and wealths evolution equations now read

r(t) =
g

λΦ

(
Nb

B

X
− Ns

N
Φ
)

(24)

dB

dt
= ρB − (1− pf )gϕ+B + pfgφX (25)

dφ

dt
= (1 − pf )gϕ+

B

X
− pf gφ (26)

where we have assumed that ϕ+ = pfΦX/NbB � 1, which is consistent when f �
1. In this limit, the equations simplify significantly, since all terms containing pf
can be neglected. Introducing the buying power Υ = B/X, one has:

r ≈ gN

λΦ
(1− 1

2s
)Υ

dΥ

dt
≈ (ρ− r)Υ, (27)

from which one extracts:

dr

dt
= (ρ− r)r −→ r(t) =

ρ

1−A exp(−ρt) , (28)

with A = (r0−ρ)/r0 > 0. This shows that r(t) tends for long times to the overall
growth rate of the economy. This is expected since a faster growth cannot be
sustained because of budget constraints: the buying power would then tend to
zero. We also find that r(t) tends to ρ exponentially, with a decay rate γ equal
to ρ itself. A better approximation for γ can be obtained by retaining the small
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Figure 5: Bubble-crash dynamics in the oscillatory regime for g/λ = 0.005, and
ρ = 0.001, f = 0.005, α = 0.9999. The straight line corresponds to numeri-
cal data, the dashed lines to the mean-field approximations (see text), and the
dashed-dotted line to the best exponential fit in the bubble saturation regime.

terms dropped in the above analysis. In figure 5 we show the curve obtained
from Eq. (28) with the value of γ estimated analytically together with the best
exponential fit of the data, and find very good agreement.

In this limit where ρT0 � 1, one can show that r(t)− ρ hardly varies during
the bubble period, and is approximately equal to Aρ. We show in Fig. (6) the
time evolution of various quantities during this bubble.

The knowledge of γ also allows us to estimate the time of occurrence of the
crash. We know that the bubble is sustained because buying strategies keep
being rewarded when the price keeps increasing. Nevertheless, we have seen that
during the bubble saturation the average return approaches the reference value
ρ, thus also the performance of buying strategies (i.e. their scores relative to the
risk free rate) will increase less as time goes on; a small drop of price might then
be enough to both trigger some strong selling strategies and favor the inactive
strategy, reducing the buying pressure. In the absence of fluctuations, the average
role of the fundamentalists is to renormalize the values of A and γ in Eq. (28)
above. The number of fundamentalists is however a stochastic Poisson process,

and fluctuates around the average value Npf with variance σf =
√
Npf . One

therefore expects that when r(t) − ρ becomes of the order of gσf/λN , one of
such positive fluctuations will bring the instantaneous return below ρ and the
price history will therefore change from 1, 1, 1, ..., 1 to 1, 1, 1, ...,−1, from which a
sudden wave of sell orders triggers the crash. A reasonable estimate of the bubble
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Figure 6: Upper graph: Behaviour of r(t) (note the fluctuations) and r(t) as a
function of t in the bubble-saturation regime (respectively, straight and dashed
lines). Lower graph: For the same time-interval, the buying power B/X (straight
line) and φ (dashed line). Same values of parameters as in Fig. 5.

end-time t? is therefore given by:

ρA exp (−γ(t? − t0)) ≈
g

λ

√
pf
N
, (29)

or

t? − t0 ≈
1

2γ
log

(
Aλ2ρ2NγT0

fg2

)
(30)

which indeed has the correct order of magnitude and qualitative behaviour, in-
creasing with decreasing g/λ (see Fig. 4). Note also that as f → 0, the bubbles
have an infinite lifetime, as we have seen in our simulations. Some fundamentalist
behaviour is needed to nucleate a crash.

4.2.3 Crash

At the beginning of the crash all the fundamentalists act as sellers since one still
has r(t) > ρ. Thus

Nb = 0 Ns = N(1 − 1

2s
) +Npf

1

2s
(31)

and the initial slope of the crash is now given by:

r? ≈ − g
λ

N

Φ
(1 − 1

2s
) (32)
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When at some point r(t) becomes smaller than ρ the fundamentalists start
acting again contrarily to the main trend driving back the price toward the funda-
mental value Xf (t). We may expect a saturation effect as in the previous regime,
which would enable an asymptotic expansion. However, as it can be seen from
the figures, the crash period is much shorter than the bubble one and the crash
stops much before any asymptotic regime set in. The reason for this asymmetry
is the interest rate that ‘refills’ the buying power in the bubble regime, that has
no counterpart in the crash regime. The crash ends in the same way as the bub-
ble does, through a nucleation process when r(t)− ρ becomes of the order of the
fluctuations (which are in this case much larger).

5 The intermittent regime

5.1 Results from the simulation

Upon increasing the parameter g/λ, the oscillating regime disappears and gives
rise to an interesting market behaviour, where different market ‘states’ coexist:
bubbles and crashes, periods of very small activity, and periods of very large
activity, intermixed with each another. A typical chart of the returns and of the
volume as a function of time is plotted in Figure 7. From visual inspection, it
is quite clear that the return time series exhibits volatility clustering. We now
turn to a more quantitative analysis of the price series statistics. The data we
analyze below corresponds to N = 10000 agents, with ‘unpolarized’ strategies
P = 0, and for g/λ = 0.75, deep in the intermittent regime (see Fig. 2). Other
parameters are identical to those in Fig 1. We note that the qualitative effects
we report below have not been seen to depend on N , at least up to N = 10000
which is the largest size we have investigated. Strong size effects, reported in the
Lux-Marchesi model [29] for instance, seem to be absent in our case. However,
we expect that when N becomes comparable to the total number of strategies
(i.e. 22m), the phenomenology will change since many agents will share exactly
the smae strategies.

First, we look at the price variogram, defined by Eq.(13). This is shown in
Fig. 8, together with an Ornstein-Uhlenbeck fit. The saturation time τ0 is of the
order of 100; taking the unit time in our model to be the week, this corresponds
to one or two years, with a volatility of roughly 20% per year, which is quite
reasonable. As explained in section 3 the saturation is a direct consequence of
the bounded wealth of agents. Is there a similar mean-reverting trend in real
markets ? The analysis of the variogram of the Dow-Jones index, for example, in
the period 1950-2000, shows no convincing sign of saturation on the scale of the
year, although a slight bend down wards for longer time lag is visible, but the
data become noisy. There has been reports in the literature of a systematic mean-
reverting effects on the scale of 5-10 years, perhaps related to the mechanism
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Figure 7: Time series of the returns, truncated to ±10% (top panel), and of the
fraction of active agents (bottom panel), for g/λ = 0.75.
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Figure 8: Variogram of the price as a function of the time lag, together with an
Ornstein-Uhlenbeck (mean-reverting) fit.

discussed here. Remember that the fundamental price in our model has zero
volatility. The short time volatility is the result of pure trading, which leads
to a random walk like behaviour of the price; the saturation occurs because of
insufficient resources to sustain a large difference between the fundamental price
and the speculative price.

The two other quantities that we have systematically studied are the volume
variogram and the absolute return variogram, defined as:

Vv,σ(τ ) =
〈
(O(t + τ )−O(t))2

〉
, (33)

where O(t) denotes, respectively, the fraction of active agents and the absolute
return |r(t)|. We show these two quantities in Fig. 9 as a function of

√
τ , together

with a fit inspired from the theory explained in the next subsection:

V(τ )|SQRT = V∞
(

1 − exp(−
√
τ

τ0
)

)
. (34)

Note that the short time behaviour of the above function is
√
τ , in contrast with

the regular (linear) behaviour of the Ornstein-Uhlenbeck form. We will explain
the origin of this singularity below, and explain why Eq. (34) fits very well the
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Figure 9: Variogram of the volume (top panel) and of the absolute return (Bottom
panel) as a function of the time lag, together with the fits given by Eq. (34) and
Eq. (35).

volume variogram. For the variogram of the absolute returns, we have added to
Eq. (34) a non zero constant, that takes into account the fact that |r(t)| is a noisy
estimate of the volatility; this extra noise is uncorrelated for different days and
adds a contribution proportional to 1− δτ,0. We have also shown a power-law fit

V(τ )|PWR = V∞
(

1−
(
τ

τ0

)−α)
, (35)

which has been advocated in many empirical studies, with α ∼ 0.1− 0.3. As can
be seen from Fig. 9, the two fits are of comparable quality. Note that the value
of α found for Vv(τ ) is significantly smaller that that for Vσ(τ ), as also found for
real market data. The reason for this will be explained in the next subsection.

We have also studied the distribution of returns. Not surprisingly, this dis-
tribution is found to be highly kurtic, which is expected since the volatility is
fluctuating. The tail of the distribution can be fitted by a power-law, with an
exponent µ ≈ 3.5, similar to the value reported in [50]: see Fig 10. Note that the
negative tail is slightly fatter than the positive tail.

The role of a non zero polarization of strategies P is, for small enough P ,
to induce some correlations (or anticorrelations) in the returns. For P < 0,
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as was the case for the oscillating regime, there is a first-order (discontinuous)
transition toward a stable market, with small, strongly anticorrelated fluctuations
that track the fundamental price. This transition occurs for rather small values
of |P | ≈ 0.03. For P > 0, on the other hand, the intermittent phase survives but
the variogram of price fluctuations shows significant positive correlations. For
sufficiently large P , the oscillating phase reappears in a continuous way.

The conclusion of this subsection is that volatility clustering appears for large
values of g/λ. Qualitatively similar effects are seen for different choices of m
(memory time for the strategies), β (memory time for the scores), and S (number
of strategies per agent), provided g/λ is large enough to be in the intermittent
phase. A crucial ingredient, however, is the existence of an inactive strategy, i.e.,
the fact that the volume of activity is allowed to fluctuate. We have not been able
to obtain long term volatility correlations of the type reported in Fig. 9 when
all strategies are active. This observation has motivated us to propose a simple
mechanism for non trivial volume (and volatility) fluctuations [39, 19], that we
discuss now in the present context.

5.2 A simple mechanism for long-ranged volume correla-
tions

5.2.1 Random time strategy shifts

In the above model, as in the Minority Game, scores are attributed by agents to
their possible strategies, as a function of their past performance. In particular, the
inactive strategy is adopted when the score of all active strategies are negative.

In the turbulent regime we have seen that the market is ‘quasi-efficient’: the
autocorrelation of the price increments is close to zero. To a first approximation
no strategy can on the long run be profitable. This implies that the strategy
scores locally behave, as a function of time, as random walks. This very fact
enables us to explain the fluctuations of volume. Let us consider for simplicity
the case S = 2 (one active strategy and one inactive strategy per agent). Since
the switch between two strategies occurs when their scores cross, the activity
of an agent is determined by the survival time of the active strategy over the
inactive one, that is by the return time of a random walk (the score of the active
strategy) to zero. The interesting point is that these return times are well known
to be power-law distributed. This leads immediately to the non trivial behaviour
of the activity variogram shown in Fig.9. The same argument was used to explain
the volume fluctuations in the Minority Game with an inactive strategy, in the
efficient phase [39].

More formally, let us define the quantity θi(t) that is equal to 1 if agent i is
active at time t, and 0 if inactive. The total activity is given by v(t) =

∑
i θi(t),

and the activity variogram is given by

Vv(t, t
′) = 〈[v(t)− v(t′)]2〉 = Cv(t, t) + Cv(t

′, t′)− 2Cv(t, t
′). (36)
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where Cv(t
′, t) denotes the volume correlation function.

One can consider two extreme cases which lead to the same result, up to
a multiplicative constant: (a) agents follow completely different strategies and
have independent activity patterns, i.e. 〈θiθj〉 ∝ δi,j or (b) agents follow very
similar strategies, in which case θi = θj. In both cases, Cv(t, t

′) is proportional
to 〈θi(t)θi(t′)〉 and can be exactly expressed in terms of the distribution P (s) of
the survival times s of the active strategies [51, 39]. For an unconfined random
walk, the return time distribution P (s) decays as s−3/2 for large s. Note that
this s−3/2 behaviour is super-universal and only requires short range correlation
in the score increments, not even a finite second moment [52, 53]. However,
in our model, the finite memory with which the scores are updated (i.e. the
value of β < 1 in Eq. (12)) leads to a truncation of the s−3/2 beyond a time
τ0 ' 1/ log(1/β). Without this truncation, the volume v(t) would never become
a stationary process, i.e. Cv(t, t

′) would still depend on both t and t′ at long
times, a phenomenon called ‘aging’ in the physics literature [54]. For finite τ0,
one can show analytically that [39, 19]:

Vv(t+ τ, t) = Vv(τ ) ∝
√
τ

τ0
τ � τ0. (37)

The formula given by Eq. (34), was found to reproduce very well the crossover
from this exact short time singular behaviour to the saturation regime.

The interesting conclusion is the following: the very fact that agents compare
the performance of two strategies on a random signal leads to a multi-time scale
behaviour of the volume fluctuations. This argument accounts very accurately
for our numerical data both for the Minority Game and the present market model
(see Fig. 9) [39, 19], and also reproduces quite well the empirical variogram of
activity in real markets [39].

5.2.2 Volume and volatility

Let us now discuss the relation between volume and volatility. In real markets, the
two are known to be correlated; more precisely, it has recently been shown in [55]
that the long run correlations in volatility come from the long range correlation in
the volume of activity (see also [56]). In our artificial market, a scatter plot of the
logarithm of the absolute return, log |r(t)| versus the volume of activity v(t) shows
nearly no correlations when the volume has small fluctuations around its average
value v, but is strongly correlated with v(t) when v(t) has large excursions above
v. This means that periods of high activity are also periods of large volatilities.
One therefore expects that the structure of temporal correlations of the volume
discussed above is also reflected in the volatility. If the relation between |r(t)|
and v(t) was linear, or weakly non linear, one would in fact expect exactly the
same shape for the variogram. The fact that this relation is highly non linear,
i.e., nearly no correlations for v(t) ≈ v, and a roughly exponential relation for
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v(t) > v, adds an instantaneous noise contribution proportional to 1− δτ,0 to the
variogram of absolute returns, and leads to a strong distortion of the shape of
the relaxation. The fact that the effective power-law α, defined in Eq. (35), is
larger for |r(t)| than for v(t) can be understood in details in the context of the
multifractal random walk model of Bacry et al. [10].

5.2.3 Other mechanisms for long-ranged correlations

Recently, many agent based models have been proposed to account for the styl-
ized facts of financial markets, in particular volatility clustering and long range
dependence [57, 31, 32, 58, 37, 59, 60]. From the analysis of these models, one
can distinguish three main mechanisms for this long-range dependence:

• Subordination of the strategies to performance. This is the mechanism ex-
plained above: as soon as each agent has different strategies with different
levels of activities, and that the choice between these strategies is subordi-
nated to their performance, one expects to see long range dependence of the
type described above, whenever these strategies lead to identical long term
performance. A similar mechanism is found in the models of [57, 32, 58],
where agents switch between different trading styles (e.g. fundamental-
ists/chartists) as a function of their perceived performance and of herding
effects. The basic prediction of this scenario is the short time square root
singularity of the volume variogram. This prediction is very well obeyed in
the Lux-Marchesi model, as shown in Fig. 11.

• Subordination of the volatility to the price. In many models, the level of
activity depends on the difference between the current price and a funda-
mental price. For example, in the model considered by Bornholdt [59], the
volatility is a growing function of the absolute difference of these prices.
In the model recently studied by Alfarano and Lux [60], on the contrary,
the volatility is a decreasing function of this difference. In these mod-
els, the price is mean reverting toward the fundamental price. Calling
y(t) = log(X(t)/Xf (t)), where Xf is the fundamental price, a schematic
equation for y(t) is:

dy

dt
= −κy + σ(y)ξ(t), (38)

where ξ is a white noise and σ(y) a certain function. The corresponding
temporal correlation function of the volatility can, for some specific forms
of σ(y), be exactly computed, and generically leads to a non exponential
decay that can mimic long term dependence. Empirically, one can indeed
detect, on the Dow Jones index over a century, some correlation between
the volatility and the difference between the current level and the average
level of the index. However, empirical studies show that volatility clustering
exists even when the market is close to its average level.
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Figure 11: Variogram of the absolute returns as a function of the time lag in
the Lux-Marchesi model with parameters as in [32]. We compare with the fit
suggested by the random time strategy shift mechanism (Eq. (34)) and a power-
law fit Eq. (35), as suggested by multifractal models [10].

28



• Heterogeneity of the agents time scales. Another mechanism, close in spirit
to the ‘HARCH’ model [61] or the cascade models proposed recently [11, 12,
13, 9, 10], comes from the different time horizons used by the agents to set
up their strategies. For example, in the model of Raberto et al. [37], agents
place orders at a distance from the current price proportional to a sliding
average of the past volatility. The time scale used by the different agents is
uniformly distributed between 10 day and 100 days. Correspondingly, this
induces a non exponential decay of the volatility correlation function when
τ ≤ 100.

All these three mechanisms are expected to play a role in real markets. More
precise statistical tests will hopefully allow one to distinguish between them and
estimate their relative contribution to the long-range dependence effects.

5.3 Crashes: the role of memory and the dynamical freez-
ing of the choice mechanism

We have also observed the following two interesting effects in the intermittent
phase:

• The frequency of bubbles/crashes decreases when the time horizon m of the
strategies is increased.

• Just after a crash that follows a speculative bubble, the volatility is anoma-
lously small.

First, how do bubbles form in this intermittent regime ? The price fluctuations
are almost without correlations. In this context it happens with probability
1/2m+1 that at a certain time step the m-bit past price history is (1,1,....1) and
simultaneously the buying power of buyers is larger than that of sellers. In this
case, at the next time step the price again increases and the past history is
mapped onto itself. Also, since g/λ is large, the price change is substantial and
the score of the buying strategies increases fast, thereby creating a bubble that
will terminate in the same way as we described in section 4. Thus, we expect
an average frequency of 1/2m+1 for the bubble/crash occurrences, which one can
easily verify in our model.

The second question concerns the period of very low volatility which system-
atically follows the crashes. In our simple model, we observe the presence of well
defined cycles in the post-crash dynamics, which may vary for different numerical
runs, but are identical for all the crashes in the same simulation. The presence of
these cycles obviously limits the amplitude of price fluctuations and reduce the
volatility. Cycles occur because during the crash, the scores of selling strategies
suddenly accumulate a large excess and are thus used for some time after the
crash irrespective of their more recent performance. Thus all agents keep using
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the very same strategies. Since the number of possible past histories is finite
(2m), the dynamics is deterministic and the system must enter a cycle.

6 Market efficiency and stability

6.1 Dynamical evolution of the parameters and self-organization

As discussed above, our model a priori involves a large number of parameters.
However, the precise value of most of them is not crucial. The only two important
parameters are the ratio g/λ, that measures the impact of trading on prices, and
P , that measures the tendency of the agents for trend following (P > 0) versus
contrarian strategies (P < 0). For small values of g/λ, the volatility of price
changes is very small, and, as we have discussed in section 4, bubbles form in such
a way that very visible trends appear. Furthermore, for small g/λ, these bubbles
have a very long lifetime. This means that the agents will naturally increase the
fraction of the wealth they invest in this market, since the perceived risk is small.
Hence g will spontaneously increase. Simultaneously, small g/λ’s lead to rather
small execution rates: see Fig. 4. Therefore, the microstructure of the market will
evolve such as to make λ smaller, so that the market becomes more liquid. Both
effects lead to an increase of the ratio g/λ, and the corresponding destruction of
clear trends. This scenario therefore suggests that g/λ enters the intermittent
region, where the market becomes ‘quasi-efficient’ (i.e. returns are uncorrelated
on short time scales), but where interesting statistical anomalies appear. The
ratio g/λ then stops growing, since the market becomes very volatile, without
clear trends. The agents therefore limit their investment. The above scenario is
somewhat related to that proposed in the context of the Minority Game in [44]:
increasing the number of players leads to a more efficient game, but reduces the
incentive for new players to enter, such as a ‘marginally efficient’ state is reached.

The role of the parameter P is quite interesting. If agents were on average
only slightly contrarian, the behaviour of the market would be completely dif-
ferent, with boring small mean reverting fluctuations around the fundamental
price, that we have here modeled as a deterministic growth Xf (t) = exp(ρt). If
this fundamental price was itself randomly fluctuating, our model market would
be very close to the standard ‘efficient market’ picture, where rational agents
systematically correct past excess returns such as to lock the market price to
the fundamental price. The fact that human psychology seems to favor mimetic,
trend following strategies seems to keep the market in the intermittent region of
the phase diagram shown in Fig. 2.
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6.2 Distribution of agents’ wealth

We have also studied the distribution of the wealth of the agents in our model.
Interesting, for small values of g, the distribution is very uniform across agents:
since the level of speculative investment is small, the redistribution effect through
trading dominates the random speculative gains. When g increases, however, a
Pareto like distribution of wealth, with very unequal agents, sets in, as expected
from the analysis of [62].

6.3 The effect of finite transaction costs

An interesting question in the context of financial markets is to understand how
the introduction of transaction costs (as the Tobin tax for example) might sta-
bilize the behaviour of these markets. We have studied a generalization of our
model in which a non zero proportional fee is paid at each transaction. As we
shall see, this drives the system toward a much more stable regime. Transaction
costs play a similar role to a negative polarization (more contrarian) strategies.

The equations to be modified are the ones concerning the update of cash, that
accounts for the extra cost: Eq. (11) is changed into:

Bi(t+ 1) = Bi(t)(1 + ρ)− δφi(t)X(t+ 1)− ν|δφi(t)X(t+ 1)|. (39)

Similarly, we adopt a modified update for the strategies scores (see 12):

Sαi (t+ 1) = (1− β)Sαi (t) + β (εαi (It−1)[r(t)− ρ]− ν|εαi (It−1)|) . (40)

Let us first discuss the small g/λ regime, where bubbles appear in the absence
of transaction costs. Scores of the buying strategies grow most rapidly at the start
of the bubble, where the return r(t0) is maximum. When the transaction costs
are such that ν > r(t0)− ρ, the bubble will never start. Since the initial growth
of the bubble is proportional to g/λ, we expect that bubbles are more robust
to costs for larger g/λ’s. If a bubble is formed, is bound to collapse earlier for
ν > 0, since the performance of the buying strategy is systematically reduced.
Hence the frequency of the oscillations will increase with ν. We show in Fig. 12
that this is indeed the case. (Note however that as ν increases, some bubbles do
not form, and one observes a mixed behaviour with on and off oscillations). In
the intermittent phase, the introduction of transaction costs favors the inactive
strategy, and we observe a decay of the average fraction of active agents as ν
increases (see Fig. 12). Large values of transaction costs drive the system toward
a more stable regime, that still however exhibits long-range volume fluctuations
of the type described in the previous section.

The above discussion suggests that transaction costs would stabilize the mar-
kets. However, since the values of g/λ that corresponds to realistic markets is
rather large, these costs would have to be substantial (a few percent per trade)
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Figure 12: Evolution of the period T of the oscillations as a function of the
transaction cost parameter ν, for g/λ = 0.005 and g/λ = 0.1. Inset: Evolution
of the fraction of active agents as a function of ν for g/λ = 0.75.
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in order to really affect the markets. This conclusion could be read backward:
a small tax, of the order of a few basis points (i.e. 10−4), would probably not
change dramatically the behaviour of markets, and would simply add to already
existing costs (brokerage, bid-ask spreads and market impact).

7 Summary and conclusion

In this paper, we have presented a detailed study of a rather complex market
model, inspired from the Santa Fe artificial market and the Minority Game.
Agents have different strategies among which they can choose, according to their
relative profitability, with the possibility of not participating to the market. The
price is updated according to the excess demand, and the wealth of the agents is
properly accounted for. The set up of the model involves quite a large number of
parameters. Fortunately, only two of them play a significant role: one describes
the impact of trading on the price, and the other describes the propensity of
agents to be trend following or contrarian.

The main result of our study is the appearance of three different regimes, de-
pending on the value of these two parameters: an oscillating phase with bubbles
and crashes, an intermittent phase and a stable ‘rational’ market phase. The
statistics of price changes in the intermittent phase resembles that of real price
changes, with small linear correlations, fat tails and long range volatility clus-
tering. We have discussed how the time dependence of these parameters could
spontaneously lead the system in the intermittent region. We have analyzed
quantitatively the temporal correlation of activity in the intermittent phase, and
have shown that the ‘random time strategy shift’ mechanism proposed in an
earlier paper [39] allows to understand these long ranged correlations. Other
mechanisms leading to volatility clustering have been reviewed.

We have discussed several interesting issues that our model allows to address,
such as the detailed mechanism for bubble formation and crashes, the influence
of transaction costs, the distribution of agents wealth, and the role of a limited
amount of capital on the long time fluctuations of the price.

Many extensions of the model could be thought of, for example, the diversity
of time horizons used by the different agents, the introduction of time dependent
fundamental factors, or a larger number of tradable assets. A more interesting
path, in our mind, would be to simplify the model sufficiently as to be able to
analytically predict the phase diagram of Fig. 2, and reach a similar level of
understanding as in the Minority Game (for some work in this direction, see
[36].)
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