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Abstract

Equity order flow is persistent in the sense that buy orders tend to be followed by buy orders and
sell orders tend to be followed by sell orders. For equity order flow this persistence is extremely
long-ranged, with positive correlations spanning thousands of orders, over time intervals of up
to several days. Such persistence in supply and demand is economically important because it
influences the market impact as a function of both time and size and because it indicates that
the market is in a sense out of equilibrium. Persistence can be caused by two types of behavior:
(1) Order splitting, in which a single investor repeatedly places an order of the same sign, or
(2) herding, in which different investors place orders of the same sign. We develop a method to
decompose the autocorrelation function into splitting and herding components and apply this to
order flow data from the London Stock Exchange containing exchange membership identifiers.
Members typically act as brokers for other investors, so that it is not clear whether patterns we
observe in brokerage data also reflect patterns in the behavior of single investors. To address
this problem we develop models for the distortion caused by brokerage and demonstrate that
persistence in order flow is overwhelmingly due to order splitting by single investors. At longer
time scales we observe that different investors’ behavior is anti-correlated. We show that this
is due to differences in the response to price-changing vs. non-price-changing market orders.
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1. Introduction

Recent studies have shown that order flow is remarkably persistent in the sense that orders
to buy tend to be followed by more orders to buy and orders to sell tend to be followed by more
orders to sell. Positive serial autocorrelation for the first autocorrelation of signed order flow
has been observed by many authors in many different markets, including the Paris Bourse by
Biais, Hillion and Spratt (1995), in foreign exchange markets by Danielsson and Payne (2001),
and the NYSE by Ellul et al. (2007) and Yeo (2008).

In fact, all the coefficients of the autocorrelation function are positive out to large lags,
corresponding to thousands of transactions (Bouchaud et al., 2004; Lillo and Farmer, 2004).
An example is shown in Figure 1. Although most of the autocorrelations are quite small, the
fact that they are all positive implies a substantial degree of predictability. This has now been
studied in many different equity markets, including the London, New York, Paris, and Madrid
stock markets, on a variety of different stocks1. The behavior is remarkably consistent.

In an efficient market the autocorrelation of price returns must decay to zero quickly. How
can strong persistence in order flow co-exist with efficient price returns? Two theories have
been offered. Lillo and Farmer (2004) show that the problem can be solved if market impact is
permanent but liquidity is asymmetric and time varying: When buy orders are more likely, the
price response to buy orders is smaller than the response to sell orders, and when sell orders
are more likely, the price response to sell orders is smaller than that for buy orders. Bouchaud
et al. (2004, 2006) have shown that it can also be solved if market impact is constant but
temporary, slowly decaying to zero. Farmer et al. (2006) demonstrate time varying liquidity
explicitly, and show that for models based on market order impact the two hypotheses are in a
sense equivalent2.

The persistence of order flow thus has important economic consequences. It indicates that
supply and demand have non-trivial dynamical properties that constrain their functional forms.
For example, Farmer et al. (2011) argue that the persistence of order flow determines the shape

1 Lillo and Farmer (2004) originally studied New York and London, Bouchaud et al. (2004) Paris, and Vaglica
et al. (2008) and Moro et al. (2009) Madrid.

2 See also Gerig (2007) and Bouchaud et al. (2009) for a detailed discussion of the equivalence. More recent
work by Eisler et al. (2011a) shows that when limit orders and cancellations are taken into account these models
are no longer equivalent.
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Figure 1: Autocorrelation function of market order signs for the stock AZN in the first half of 2009, plotted
on double logarithmic scale. The time lag τ is measured in terms of number of market order placements. The
estimated autocorrelations are all positive and statistically significant out to lags of more than 100.

of the market impact of large institutional orders, as well as its permanent and temporary
components. Persistence of order flow implies that the market deviates substantially from the
equilibrium that would prevail if all participants were forced to reveal their true intentions at
the outset of trading.

Although nothing in our analysis here depends on this, in many equity markets order flow has
been observed to obey a long-memory process3. This means that the autocorrelation function
C(τ) of the order signs (εt = +1 for buy and εt = −1 for sell) asymptotically decays in time4

for large τ as C(τ) ∼ τ−γ, where 0 < γ < 1. The observation of long-memory in stock markets
is very robust; in London, for example, every stock examined shows long-memory under strict
statistical tests (Lillo and Farmer, 2004).

The persistence associated with long-memory is remarkable in many ways. The slow decay
with τ implies that the autocorrelation function is not integrable. This means that order flow
is highly predictable, with events in the distant past having non-negligible influence on the
present. This predictability is persistent, in the sense that prediction errors asymptotically
decay as a power law, implying one can predict further into the future than is possible if errors
decay exponentially. We wish to emphasize, however, that nothing in this paper depends on
whether or not order flow is actually long-memory; our work here is focused on the origin of
the correlations, which are undeniably extremely long-range.

We distinguish two types of behavior that can give rise to persistent order flow:

1. Order splitting, corresponding to a sequence of orders of a given sign originating from a
single investor. This has a natural strategic cause: To reduce impact investors split their
orders into smaller pieces, and execute them gradually, as originally hypothesized by Kyle

3 A standard example of a long-memory process is a fractional Brownian motion. We use the term in its
more general sense to mean any process whose autocorrelation function is non-integrable (Beran, 1994). This
can include processes with structure breaks, such as those studied by Ding, Engle and Granger (1993). Long-
memory was observed in the London and New York stock exchanges by Lillo and Farmer (2004), in the Paris
stock exchange by Bouchaud et al. (2004) and in the Spanish stock exchange by Vaglica et al. (2008). The
question of whether or not order flow in other asset classes has long-memory remains open.

4 We are using the notation A(x) ∼ B(x) to mean limx→∞A(x)/B(x) = C with C 6= 0.
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(1985)5. If we call the underlying package of orders corresponding to a given decision a
metaorder, heavy tails in the size distribution of metaorders will induce persistence in
order flow6.

2. Herding, corresponding to a sequence of roughly contemporaneous orders of a given sign
originating from different investors7. Herds can be directed exogenously or endogenously.
We investigate an example of each:

(a) Public information. Information is public and investors all respond in more or less
the same way at more or less the same time. Persistence in information arrival,
or alternatively heavy tails in the variability of the response to information, can
generate persistence in order flow.

(b) Imitation. Information is private but investors influence each other. If one investor
buys, other investors are more likely to buy. Even if private information arrival is
IID, the time needed for information to propagate can make order flow persistent.

Although one might not normally think of a common response to public information as herding,
as we show here, the two can produce indistinguishable order flow. In the public information
model the sheep are directed by an external shepherd, whereas in the imitation model they are
directed by each other. We develop simple examples of processes of type (1), (2a), and (2b)
and use this to formulate null hypotheses for order splitting and herding.

Our empirical analysis here rests on a method that we develop to decompose the autocor-
relation of order flow into herding and splitting components. We apply this method to data
from the London Stock Exchange (LSE) with codes indicating the member who executed the
order. Our results show that the persistence of order flow is overwhelmingly caused by order
splitting. In contrast the contribution of herding is negligible. In fact, over longer time scales
we observe anti-herding, in which investors trade in the opposite direction of other investors.

Members of the exchange may trade for their own accounts, but they may also act as
brokers for investors who are not members8. We thus have the problem that while we have
useful information about identity, this information is not fine-grained enough to allow us to
separate different investors. By investor we mean any entity with a coherent trading strategy.
This could correspond to a specific trading account within an institution such as an investment
bank or hedge fund, or a private individual trading for his or her own account. The lack of
identifiers at the level of single accounts potentially makes our results difficult to interpret.

To deal with this problem we introduce the concept of a brokerage map associating an in-
vestor with one or more brokers. We make several different hypotheses about brokerage maps,
and study their effect on the decomposition of the autocorrelation function under different hy-
potheses for investor behavior. This is done through a combination of closed form calculations,
simulations, and bootstrapping with the real data. This allows us to get a good understanding

5See also Farmer et al. (2011); Toth et al. (2011b).
6 Assume a metaorder is split into pieces and executed incrementally. Given that we have observed N

executions, what is the probability of observing more? It is possible to show that if the distribution of metaorder
sizes is exponential, past executions give no information about whether execution will continue, i.e. they give no
information about the size of the metaorder. If the distribution is heavier-tailed than exponential, continuation
becomes more likely with each execution, and if it is thinner-tailed than exponential, continuation becomes less
likely with each execution. See Lillo et al. (2005), LeBaron and Yamamoto (2010) and Farmer et al. (2011)

7 Most studies of herding have focused on imitation. See for example (Banerjee, 1992, 1993; Bikhchandani
et al., 1992; Orlean, 1995; Raafat et al., 2009). Lebaron and Yamamoto 2007; 2008 constructed an agent-based
model of imitation and demonstrated that it could produce long-memory in order flow. Several previous studies
have focused on the effect of communication network structure on price fluctuations; see (Kirman and Teyssiere,
2002; Iori, 2002; Cont and Bouchaud, 2000; Tedeschi et al., 2009). Barber et al. (2009) provides an example in
which herding is externally directed. Lakonishok et al. (1992) and Wermers (1999) find only weak evidence for
herding.

8 We will use the terms “member” and “broker” interchangeably.
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of how brokerage influences the results. We show that, barring unrealistic brokerage maps, our
main qualitative conclusions can be reliably interpreted as reflecting the behavior of investors.

Our results here add to earlier evidence that order splitting is dominant. Early studies
showing that order splitting is widespread were done by Chan and Lakonishok (1993, 1995).
Lillo, Mike and Farmer (2005) introduced a model in which information is completely private,
and participants cannot observe each others’ order flow (or in any case do not respond to it).
This model assumes that investors draw the total quantity V they wish to trade at random
from a pre-defined distribution P (V ), divide V into smaller, equal sized pieces, and then incre-
mentally execute each piece at a constant rate until the entire order of size V is filled. Under
the assumption that in the limit V →∞ the distribution P (V ) has a Pareto (power law) tail,
of the form P (V > v) ∼ v−β, then in the limit τ → ∞ the resulting autocorrelation C(τ) of
the order flow is a power law C(τ) ∼ τ−γ, with

β = 1 + γ. (1)

This hypothesis was tested by comparing empirical measurements of the tail exponents β for
trading volume in block markets to empirically measured correlation scaling exponents γ using
data for 20 stocks from the London Stock Exchange. They showed that Eq. (1) is well-satisfied
by the data. Another supporting piece of evidence is due to Gerig (2007), whose results (based
on only one stock) suggested that trades coming from the same brokerage have long-memory,
whereas trades from different brokerages do not (see also Bouchaud, Farmer, and Lillo (2009)).
Finally, Vaglica et al. (2008) reconstructed the volumes V of the split orders from broker data
(similar to the one used here), and found that their size is asymptotically Pareto distributed
with a tail exponent close to the one predicted by Eq. (1).

Thus there is already preliminary evidence in favor of order splitting. This paper makes the
evidence much stronger by developing precise null hypotheses to test for splitting v.s. herding,
and systematically analyzing six stocks over a period of ten years, a sample of more than 39
million orders.

In Section 2 we describe our data. In Section 3 we develop a decomposition of the au-
tocorrelation function into splitting and herding components. In Section 4 we apply this to
order flow data identifying member firms and show that it overwhelmingly favors splitting over
herding. We study the heterogeneity of individual members and show that most of them are
extremely persistent in terms of both trade direction and the clustering in time of their trades.
In Section 5 we investigate the question of whether our analysis reliably reflects the behavior of
investors. We develop simple models of herding and splitting and study how brokerage distorts
the decomposition of Section 3, to formulate null hypotheses for investor behavior and broker-
age. Comparing the data to the null hypotheses shows that extreme assumptions are required
to contradict our qualitative conclusions. In Section 6 we investigate anti-herding more care-
fully, and show that it is driven by heterogeneity in the response of investors to market orders
that change the price, vs. those that don’t. In the conclusions we summarize and reflect on
the economic implications of our results.

2. Data

This study is performed using data from the London Stock Exchange (LSE). There are two
parallel markets, the on-book market (SETS) and the off-book market (SEAQ). In the on-book
market trades take place via a fully automatic electronic order matching system, while in the
off-book market trades are arranged bilaterally via phone calls. We restrict our study to the
on-book market. Note that there are no official market makers, though it is possible for any
member firm to act as a market maker by posting bids and offers simultaneously.
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We study six stocks in the period from June 2000 to June 2009, with the exception of
a six month period from January to May in 2003. We divide the data for each stock into
17 subperiods of six months each, for a total of 17 × 6 = 102 samples. The six stocks we
study are AstraZeneca (AZN), BHP Billiton (BLT), British Sky Broadcasting Group (BSY),
Lloyds Banking Group (LLOY), Prudential (PRU), Vodafone Group (VOD)9. In cases where
we present data for only one period we will use AZN in the first half of 2009. In this period the
typical number of market orders per day is between 4, 000 and 5, 000. The number of market
orders in each sample ranges from 91, 710 to 1, 416, 000, with an average of 382, 500.

Our data set contains all orders placed in the on-book market. Each order is characterized
by a membership code of the member who placed the order10. The number of members varies
throughout the sample, but there are typically about 100 members. To avoid data with poor
statistics, in each six month period we remove members who make less than 100 transactions
across the full period, which typically leaves about 80 active members. The activity level is very
heterogeneous. For example, the 5 most active market members are responsible for 40-50% of
transactions and the 15 most active ones are responsible for 80-90% of transactions. The value
of the Gini coefficient of member activity averaged across the 102 samples is 0.87. This is quite
consistent across stocks and time periods, with a standard deviation of only 0.02. Thus the
trading activity is strongly concentrated in a relatively small number of member firms.

We have performed the analysis given here in three different ways: (1) market order signs εt,
where a market order is defined as any event that results in an immediate transaction; (2) signs
of all orders, including both market and limit orders; (3) signed volume vt of transactions. The
results are similar in all three cases, except that for signed volume they are somewhat noisier.
We present only the results for case (1), market order signs. The number of market orders is
used to measure time, i.e. t′ = t+ 1 whenever there is a market order placement.

3. Decomposing order flow

In this section we derive a decomposition of the autocorrelation of order flow. This decom-
poses it in two ways: (1) Contributions due to trading direction (buying vs. selling) vs. activity
clustering (when investors make their trades), and (2) contributions due to herding vs. order
splitting.

Consider a time series of orders of sign εt, where εt = +1 for buy orders and εt = −1 for
sell orders. For convenience we measure time in terms of order arrivals, so that time advances
by one unit every time a new order arrives. We define the signed order flow εit to be zero if the
order at time t was not placed by investor i and to be the order sign otherwise, i.e.

εit = 1 => buy order placed by investor i

εit = 0 => order placed by another investor

εit = −1 => sell order placed by investor i.

As already mentioned the analysis can be performed using market orders (as we have done
here), all orders, or with signed order volumes, with similar results.

9 We have also investigated other stocks and find similar results.
10 We do not have the actual names of the members, but rather anonymized codes uniquely identifying each

member. For the period 2000-2002 we are only able to track members for one month, because in this part of
the data codes are reshuffled each month. Because we are operating on timescales of at most a few hours this
does not affect the results.
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where N is the length of the time series.
To decompose this further assume stationarity, let N i be the number of orders due to

investor i and let N ij(τ) be the number of times that an order from investor i at time t is
followed by an order from investor j at time t+ τ . Similarly let P i = N i/N be the fraction of
orders placed by investor i, and P ij(τ) = N ij(τ)/N be the fraction of times that an order from
investor i at time t is followed by an order from investor j at time t+ τ . We can then write

C(τ) =
∑
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To decompose and interpret the autocorrelation it is useful to define some simplifying no-
tation. Let the sample mean of the order sign for investor i be

µi ≡ 1

N i

∑
t

εit.

The sample autocorrelation in the order signs of agents i and j (including the zeroes when they
are not trading) is

Cij(τ) ≡ 1

Nij(τ)

∑
t

εitε
j
t+τ − µiµj. (4)

The weighting function P ij(τ) captures the extent to which investors i and j tend to be active
with a given time lag τ , regardless of the sign of their orders. If investors act independently
then in the large N limit

P ij(τ) = P iP j ∀i and ∀j, (5)

and P ij(τ) is independent of τ . Deviations from independence can be characterized by

P̃ ij(τ) ≡ P ij(τ)− P iP j. (6)

With these definitions the autocorrelation function of order flow can be written

C(τ) =
∑
i,j

P ij(τ)Cij(τ) +
∑
i,j

P̃ ij(τ)µiµj. (7)

This is naturally further decomposed as

C(τ) = Csplit(τ) + Cherd(τ), (8)

where

Csplit(τ) ≡
∑
i

P ii(τ)Cii(τ) +
∑
i

P̃ ii(τ)(µi)2, (9)

Cherd(τ) ≡
∑
i 6=j

P ij(τ)Cij(τ) +
∑
i 6=j

P̃ ij(τ)µiµj.
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This decomposition will be the main analysis tool used in this paper.
Csplit(τ) is the autocorrelation of orders coming from the same investor, and Cherd(τ) is the

autocorrelation of orders coming from different investors. There might be many reasons why
the orders from the same investor might be positively correlated; we have chosen to label this
as Csplit because the economic motivations for doing this are clear and well-known. Another
obvious interpretation might be that the private information arriving to investors is autocorre-
lated; we cannot distinguish these explanations, so the reader should bear this in mind when
we use the term “splitting”. Similarly we refer to any interaction that induces autocorrelations
among different investors as “herding”.

It is useful to compare the first and second terms of the decomposition in Eq. (7). The first
term weights the correlation of order signs by the activity P ij(τ), and the second term weights
deviations in activity by the mean order signs µi and µj. Since buying and selling roughly
balance, for large samples µi is small and the second term is negligible11. Typical values for
our dataset are |µi| = 0.03 and

∑
i,j P̃

ij(1)µiµj = 10−4. Thus the first term of Eq. (7) is three
orders of magnitude larger than the second one, and it is a very good approximation to take

C(τ) '
∑
i,j

P ij(τ)Cij(τ). (10)

Similar approximations can be used for Csplit(τ) and Cherd(τ). Thus one can think of the
autocorrelation as a product of two terms, one that depends on activity, as reflected by P ij(τ),
and the other that depends on trading direction, as reflected by Cij(τ).

4. Main empirical results

We now compute the decomposition of the order flow of the data. To do this we make
the bold leap that members of the exchange can be treated as if they were investors, i.e. we
associate the indices i and j of the previous section with exchange membership. As we have
already commented, this has the very serious problem that members often act as brokers, so
that orders associated with a given member may correspond to a large number of different
investors, and similarly, a given investor may use more than one broker. In the next section we
will explicitly model the distortion this introduces under carefully constructed null hypotheses
and show that, barring extreme behavior, the qualitative conclusions of this section apply to
investors as well.

4.1. Splitting dominates herding

Figure 2 shows an example of the decomposition of the autocorrelation function into C(τ) =
Csplit(τ) +Cherd(τ) according to Eq. 8. This illustrates the main result of this paper: Splitting
dominates herding. This is evident in several ways. The splitting term is always positive and
is larger than the herding term at all lags. This is particularly true for τ & 10, since in this
case the herding term is negative. We term such behavior anti-herding.

The behavior shown in Figure 2 is remarkably consistent across all 102 samples. To illustrate
this, in the left panel of Figure 3 we plot the decomposition C(τ) = Csplit(τ)+Cherd(τ) averaged
across all of the 102 samples, and also plot the standard deviation across the samples for each
time lag. The average behavior is very close to that of AZN. Furthermore, the standard
deviations are small compared to the difference between Csplit and Cherd. For τ ≤ 100, where

11 It is not surprising that this term is small – in the long-run one expects µi to be close to zero. If εit
represents signed trading volume, for example, then

∑
t ε
i
t is the total inventory change during the period of the

study. If the inventory remains bounded, then µi → 0 in the limit N → ∞. Even if εit represents order signs,
then if investors buy as often as they sell, µi is small.
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we have the best statistical reliability, there is not a single case in which the herding term is
larger than the splitting term.

The anti-herding effect observed for AZN is not special to this stock or this time period:
Almost all stocks show similar behavior. To examine this in more detail, in the right panel
of Fig. 3 we enlarge the scale and plot only Cherd. Instead of showing the standard deviation
across the samples, we show the standard error. The fact that the average value of Cherd is
consistently negative for 10 ≤ τ ≤ 250, at many lags by more than three times the standard
error, suggests that this effect is real. We will return in Section 6 to examine anti-herding in
more detail.

To have a quantitative comparison of the size of the two terms and to see how this changes
with τ , in the left panel of Figure 4 we plot the fraction of the autocorrelation due to splitting,
i.e.

S(τ) =
Csplit(τ)

C(τ)
. (11)

Note that S(τ) is larger than one if Cherd is negative. In the left panel we show results for AZN
for the first half of 2009, and in the right panel we show the average result for all 102 samples.
For τ = 1 the splitting accounts for about 75% of the autocorrelation and herding explains
about 25%. For larger lags splitting becomes relatively even more important. For lags larger
than roughly 10, S(τ) becomes larger than one because the herding part becomes negative,
and S(τ) rises to about 1.5. This means that the splitting term is about 2.5 times the absolute
value of the (anti)herding term. For large τ the standard deviation across the samples becomes
large because Csplit and particularly Cherd are small, so we are taking ratios of small numbers.

4.2. Heterogeneity of individual members

In this section we study the behavior of individual members of the exchange and show that
their behavior is remarkably consistent, with a few exceptions. The decomposition of Eq. (7)
makes it clear that persistence in order flow is driven by two factors: Persistence in order sign,
measured by Cij(τ), and persistence in activity, measured by P ij(τ). Because they appear
multiplicatively, both factors are needed to get a large autocorrelation. The fact that splitting
is dominant over herding indicates that the bulk of the persistence is due to the diagonal terms
Cii(τ) and P ii(τ).

To understand how these vary across the members of the exchange, in Fig. 5 we show Cii(τ)
and P̃ ii(τ) for the 15 most active members. We have chosen to look at P̃ ii(τ) rather than

10
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Figure 5: Heterogeneity of the contribution of individual exchange members (labeled by i) in the diagonal
component of the autocorrelation of order flow. Following the decomposition of Eq. (7), we plot Cii(τ), which
measures persistence in trading direction (left) and P̃ ii(τ), which measures persistence in activity (right). We
show the 15 most active members for AZN for the first half of 2009, using distinctive symbols to indicate each
member (consistently in both plots). For one the members (labeled by diamonds) Cii(τ) decays more quickly
than the others and for some values of τ > 10 is negative, hence the diamonds cannot be plotted on logarithmic
scale and cannot be connected. This member is the fifth most active.

P ii(τ) in order to highlight the approximate power law behavior12 with τ . For P̃ ii(τ) all of
the members show strikingly similar behavior; the individual curves are surprisingly straight
and parallel, indicating a good correspondence to the same power law, though with differences
in the overall scale. Cii(τ) also decays very slowly, though the curves tend to steepen slightly
with increasing τ , and the relative dispersion also increases. There are three members for
which Cii(τ) decays significantly faster than the others, suggesting that these members follow
a different business model.

The correlation in trading direction Cii and the trading frequency P i are essentially uncor-
related: The Spearman rho of P i and Cii(1) is 0.06. In contrast the Spearman rho of P i and
P̃ ii(1) is typically very high, for example 0.92 for AZN in the first half of 2009. Because (P i)2

is subtracted in computing P̃ ii, such a large correlation is not automatic. This indicates that
the most active members also tend to trade in intermittent bursts – if they become active, they
tend to remain active, and vice versa. Not surprisingly the Spearman rho between Cii(1) and
P̃ ii(1) is small, indicating that correlation in trading direction does not imply correlation in
trading activity.

The relationship between conditional and unconditional activity is illustrated differently in
Figure 6. We plot P ij(τ = 1) against P iP j for all pairs of members i and j. The off-diagonal
elements i 6= j tend to be very close to the identity line, indeed somewhat below it, while the
diagonal elements are well above the identity. This shows that there is strong persistence in the
activity of brokers, but little coordination between the activities of different brokers. Larger
values of τ show similar behavior though with somewhat smaller amplitude.

These results indicate that the persistence of order flow stems from the persistence in both
trading direction and activity of individual members of the exchange. They also show that the
dominance of splitting over herding is also apparent in the activity level P ij, where we see that
the diagonal elements P ii dominate over the off-diagonal elements P ij with i 6= j.

12 P ii(τ) converges to a constant value when τ is large. In contrast, the deviation in activity level, P̃ ii(τ) =
P ii(τ)−(P i)2, converges to zero. Thus on double logarithmic scale one is able to see that P̃ ii(τ) is asymptotically
roughly a straight line, in contrast to P ii.

11
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Figure 6: The joint probability of activity P ij(τ = 1) as a function of P iP j , the hypothetical joint probability
under the assumption of independence. Each symbol indicates a given pair of members i and j for AZN during
the first half of 2009. Diagonal elements i = j are indicated by blue crosses and off-diagonal elements i 6= j by
black circles. The plot is on double logarithmic scale. For comparison the identity line P ij(τ) = P iP j is shown
as a solid black line. The fact that the diagonal elements P ii(τ) consistently lie well above the identity line is
consistent with the large contribution of splitting. In contrast the off-diagonal elements P ij (with i 6= j) tend
to cluster along or even slightly below the identity line.

5. Do these results apply to investors?

If we assume a one-to-one mapping between investors and member firms, then the results
of the previous section show that splitting strongly dominates herding. However, most of the
member firms are at least partially acting as brokers, lumping together orders from many
investors, while investors may be using multiple brokers, or varying their choice of broker. To
what extent do the results of the previous section also apply to investors?

In this section we confront this problem by developing a set of null hypotheses. This in-
volves formulating more explicit models of investor behavior for which we can compute the
decomposition of order flow. We then explicitly model brokerage, formalizing the notion of a
brokerage map assigning investors to brokers, and studying how brokerage distorts the decom-
position of order flow. It is then possible to compare the behavior observed in the data to a
set of null hypotheses combining different scenarios for investor behavior and brokerage. While
brokerage can substantially distort the decomposition, we show that the dominance of splitting
over herding for member firms is so strong that under reasonable assumptions it must be true
for investors as well.

5.1. Three hypotheses about persistence in order flow

We now formulate models of splitting and herding. At this stage we leave the definitions
as general as possible, specifying only what is needed to derive the decomposition, and make
them more specific later as needed.

As we have defined it here, “herding” refers to any phenomenon that induces synchronized
trading behavior between different individuals, inducing positive correlations in order flow.
There are several quite different causal mechanisms capable of generating such behavior. To
illustrate the notion of a common cause we introduce a model of herding based on a common
response to public information. To illustrate the notion of mutual influence we introduce a
model of herding based on imitation. Order splitting is more straightforward, so one model
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suffices. There are of course many variations in how one can define such models; we make some
arbitrary choices, aiming for simplicity.

5.1.1. Order splitting

Under order splitting the autocorrelation of order flow is generated entirely by investors who
split large trades into small pieces and execute them incrementally. In a “pure” order splitting
model information is private and IID. Since by assumption the autocorrelation between different
investors is zero, the persistence is entirely due to splitting,

Csplit(τ) = C(τ),

Cherd(τ) = 0. (12)

5.1.2. Herding model I: Public information

Our first herding model produces herding behavior via a similar response to a common
external cause – the herd is directed from outside. Assume an exogenously given public in-
formation signal It with homogeneous investors who respond to the signal similarly except for
possible variations in factors such as speed. It is random real-valued variable. Let the trading
frequency of investor i be P i > 0, normalized so that

∑M
i=1 P

i = 1, where M is the number of
investors. Assume an information signal It arrives at time t and generates nt orders with the
same sign as It, where nt = f(|It|) and f is a non-decreasing function. The investor placing
each order is drawn according to that investor’s trading frequency P i. We assume sampling
with replacement, so that a given investor may be drawn more than once. At time t+nt a new
information signal It+nt arrives and the process is repeated13.

Persistence in order flow can result from several different effects: (1) strong autocorrelations
in It, such as those of a long-memory process. (2) heavy tails in the distribution P (It); (3)
nondeterministic behavior in f , generating or contributing to heavy tails in nt; (4) any combi-
nation of the previous three effects. All of these produce similar results. For definiteness we
assume (1), but this choice makes no difference.

The decomposition of the autocorrelation can be computed in closed form. Since the in-
vestors are chosen randomly the timing and sign of the trade are independent of the investor,
which implies

Cij(τ) = C(τ),

P ij(τ) = P iP j.

The second of these relations implies that P̃ ij(τ) = 0, ∀i, j. Eq. (9) then implies that

Csplit(τ) =
∑
i

P ii(τ)Cii(τ) = C(τ)
∑
i

(P i)2

Cherd(τ) =
∑
i 6=j

P ij(τ)Cij(τ) = C(τ)
∑
i 6=j

P iP j. (13)

The decomposition thus depends only on the sum of the square of the trading frequency P i of
the investors. This is closely related to the variance

Var[P ] =
1

M

∑
i

(P i)2 −
( 1

M

∑
i

P i
)2

=
1

M

∑
i

(P i)2 − 1

M2
. (14)

13 As stated this model generates nt strings of sequential orders all of the same sign. It is possible to make
the order flow look more realistic by injecting orders with a random sign, but the only effect is to decrease the
prefactor of the autocorrelation without otherwise affecting its time dependence.
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Substituting into Eq. (13) yields

Csplit(τ) = C(τ)
( 1

M
+M Var[P ]

)
Cherd(τ) = C(τ)

(M − 1

M
−M Var[P ]

)
. (15)

Thus the relative size of Csplit and Cherd only depends on the number of investors M and the
variance of their trading frequencies P i.

The variance of P lies in the range 0 ≤ Var[P ] ≤ 1
M

(
1− 1

M

)
. The bounds occur when:

• All investors are equally active, V ar[P ] = 0.

Csplit =
C(τ)

M

Cherd =
M − 1

M
C(τ).

• All trading is concentrated in one investor, V ar[P ] = 1
M

(
1− 1

M

)
.

Csplit = C(τ)

Cherd = 0.

If C(τ) > 0 then Csplit is always positive and Cherd is always non-negative. As the trading
goes from uniformly distributed to concentrated in a single member, Csplit/C grows from 0 to
1 while Cherd/C decreases from 1 to 0. Thus the heterogeneity in investor’s trading frequencies
controls the relative importance of the herding vs. splitting components of the autocorrelation
function.

5.1.3. Herding model II: Imitation

Our second herding model produces herding via investors influence on each other, so that
herding is generated endogenously without need for an external coordination mechanism. We
assume that investors exist within a social network where information is transmitted between
neighbors. The transmission of information depends on the topology of the network, which
also determines the autocorrelation of order flow. In this model the investors herd by following
each other.

The nodes of the social network correspond to investors and links correspond to influence.
The network is connected, so that all nodes are joined to the same graph by at least one link.
Investor i has a binary state sit = ±1 that indicates whether in the absence of influence this
investor prefers to buy or sell. The dynamics are characterized by a parameter p ∈ [0, 1] that
describes the degree of imitation between agents.

The order flow is generated using the following algorithm: At time t an investor i is chosen
randomly and an order with sign sit is submitted. Then t → t + 1 and each neighbor j of
investor i is considered. With probability p investor j submits an order εjt = sit and changes
state to sjt+1 = sit, and with probability 1 − p investor j submits an order sjt and her state is
left unaltered. The time is once again incremented and the next neighbor, if any, is considered.
Once all the neighbors of investor i have been considered a new node i′ is chosen at random
and the process continues.

There is no need for exogenous information in this model. Providing the system is initially
placed in a sufficient diverse initial configuration, it will generate time correlated but otherwise
random order flow. In the noiseless version this model has two fixed points where all the
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agents are found in the same state (buy or sell). If the network is large enough this state
cannot be reached in a reasonable time. It is also possible to generalize the model to inject
external information by occasionally randomly altering the sign of the states of one of the nodes.
Providing this is not done too often, however, it does not substantially alter the characteristics of
the order flow. The degree distribution p(`) and the parameter p determine the autocorrelation
of the order flow14.

We cannot compute the splitting vs. herding decomposition for this model in closed form.
The simulations presented in the next section show that the imitation model has essentially the
same decomposition as the public information model, i.e. Eq. (15) is a good approximation of
its decomposition.

5.2. Models of brokerage

In the real data we cannot observe investors – we only know the member of the exchange
who executes the trade. As already mentioned, members often act as brokers for other investors.
The distortion this introduces has the potential to alter the decomposition. In this section we
address this problem by introducing the concept of a brokerage map and studying how the
decomposition is altered under various hypotheses about brokerage. We will consider several
different types of brokerage maps, as described below.

5.2.1. Fixed random brokerage

This model assumes that each investor randomly chooses a single broker and thereafter
always executes through that same broker and that broker only. To match the real data we
have to constrain the random choices to match the brokerage trading frequency P

′i. This is
important, because as we will show the amount of distortion is strongly dependent on P

′i.
Mirroring the same notation that we used for investors, assume there are M ′ brokers labeled
by an index i and that P

′i is the trading frequency of broker i.
Under this brokerage map the decomposition is distorted as follows:

• Order splitting. The decomposition is unchanged, i.e. Csplit(τ) = C(τ) and Cherd = 0.
This is true regardless of P

′i.

• Public information. The decomposition is given by Eq. (15), except that M = M ′ and
Var[P ] = Var[P ′]. Thus, depending on Var[P ′], the result can either be dominated by
herding (when there are many brokerages with the same trading volume) or dominated
by splitting (when one brokerage dominates the trading volume). While it might seem
surprising that this no longer depends on M or Var[P ], one should bear in mind that
under fixed random brokerage we are assuming the correlation for investors within a
given broker is no different than for investors with different brokers, and Var[P ′] and
hence the decomposition at the level of brokerage data are determined by M , M ′ and
Var[P ], which have to be consistent with P

′i.

• Imitation. We are not able to compute the distortion in closed form. Instead we simulate
the imitation model and compare it to the public information model under the assumption
that both have the same autocorrelation function C(τ). We construct a social network
using preferential attachment (Simon, 1955; Barabasi et al., 1999). An initial node is
created, and then new nodes are incrementally generated and connected to a randomly
chosen pre-existing node with a probability of attachment proportional to its degree.
Because we connect to only one pre-existing node at a time the resulting graph is a
tree15.

14 The degree of a node of a graph is the number of links connected to that node
15 We could more realistically attach to multiple pre-existing nodes, but this does not affect the results.
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Figure 7: Splitting vs. herding decomposition for the public information and imitation models with a fixed
random brokerage map. For the imitation model order flow is generated as described in the text, and the
splitting (blue triangles) and herding (red circles) contributions are computed numerically using Eq. (9). For
the public information model we assume the same total autocorrelation C(τ) (black dashed line) as the imitation
model, and compute the splitting (blue dots) and herding (red line) contributions using Eq. (15). Broker trading
frequencies P

′i are chosen to match AZN in the first half of 2009. Herding strongly dominates splitting and the
decomposition for the two models is nearly identical.

Once the investor social network is built we construct a fixed random brokerage map. We
assume M ′ = 50 brokers and match their trading frequency to the 50 largest exchange
members for AZN during the first half of 2009. The imitation frequency p = 0.9 with
M = 10, 000 investors. Simulations are run for 106 time steps.

The resulting autocorrelation and its decomposition under both the imitation model and
the public information model are shown in Fig. 7. The result is completely dominated by the
herding component. While there is a non-zero splitting component, it is more than an order of
magnitude smaller. Furthermore the decomposition for the two models is nearly identical.

For the imitation model the persistence of order flow derives from the heavy tailed degree
distribution of the social network. The process of imitation converts the scale free power law
degree distribution of the social network, which by construction is of the form p(`) ∼ `−η+1,
into order flow with power law decay of autocorrelations. In fact, in the limit p→ 1 it can be
shown that the autocorrelation function decays asymptotically as C(τ) ∼ τ−(η−1).

Thus for order splitting the fixed random brokerage map introduces no distortion, whereas
for herding models the distortion is strongly dependent on the brokerage trading frequencies.
When the trading frequencies are uniform these models strongly favor herding, but as it becomes
concentrated in a few brokerages the splitting component increases.

5.2.2. Dynamically random brokerage

To conceal order flow some investors may vary their choice of brokers. Dynamically random
brokerage captures this strategy in its extreme form: On every trade each investor randomly
chooses a broker according to the broker trading frequencies P

′i. There is thus no memory of the
past, and no allegiance of any investor to any broker. Random choice implies that P

′ij = P
′iP

′j,
and therefore the decomposition is given by Eq. (15). The resulting decomposition is thus
identical to that of the public information model under a fixed random broker map. This is
true regardless of the investor model.
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As we saw in the previous section, when we use realistic broker trading frequencies the
herding component is much larger than the splitting component. Thus, we have the interesting
result that the distortion caused by dynamically random brokerage creates the appearance of
herding, regardless of what the investors are actually doing. Given that we observe a strong
dominance of splitting this is serendipitous, as it implies that dynamically random brokerage
is a small effect, a result that is interesting in and of itself.

5.2.3. Correlation of social network and brokerage

Perhaps the previous examples are too random. What if brokerage choice is correlated with
investor behavior? To study this question we have generalized the imitation model to allow for
the possibilty that neighbors in the influence network also tend to use the same broker.

In the generalized imitation model the social network and the brokerage assignments are
made in tandem. As we construct the social network, when we attach each new investor to
a previous investor, we assign the same broker with probability Φ or a random broker with
probability 1−Φ. As a result there is a correlation between neighborhood relationships in the
trading graph and brokerage assignment16.

5.3. Comparison with real data

We now have all the tools needed to address the main question: Given that brokerage can
distort the splitting/herding decomposition, can we nonetheless say with confidence that the
dominance of splitting over herding observed in the exchange member trading data reflects
the behavior of investors? We address this question by examining different scenarios for in-
vestor/brokerage to provide null hypotheses for comparison to the data. A summary of the
comparisons is given in Figure 8 and discussed in detail below.

5.3.1. Public information/fixed random brokerage

This scenario combines the public information model and fixed random brokerage, as de-
scribed in Section 5.2.1. The decomposition is given by Eq. (15) and depends only on the
number of brokerages M ′ and their variance Var[P ′]. In the right panel of Figure 4 we compare
the predictions to real data. For the data S(τ) = Csplit(τ)/C(τ) increases from about 0.7 to 2
with increasing τ , in contrast to the predicted value, which is roughly 0.06 independent of τ .
Thus the order splitting component is a factor of 10− 30 higher than predicted.

A further comparison is given in Figure 8, where we plot the splitting ratio S(τ) =
Csplit(τ)/C(τ) averaged for lags 1 ≤ τ ≤ 50 as a function of the variance of the brokerage
trading frequencies, assuming M ′ = 50. The values from the real data samples are very well-
separated from the prediction for all 102 cases, indicating that this scenario cannot explain the
data.

5.3.2. Generalized imitation model/fixed random brokerage

This scenario combines the generalized imitation model (including correlations between
neighbors and brokerage) and fixed but random brokerage, as discussed in Section 5.2.3. The
predicted decomposition is compared to the 102 data samples in Figure 8. The figure shows the
splitting ratio S(τ) = Csplit/C(τ) and the broker-neighbor correlation Φ as a function of the
brokerage trading frequency variance Var[P ′]. Because S(τ) and Φ are not linearly related we
use different scales on the right and left. While a few of the data sets approach the prediction,
almost all of them are well-separated from the predictions under this scenario. Realistic values

16 An inconvenient feature of this model is that Φ and P
′i are not independent, so it is harder to construct a

network with given values of P
′i. As Φ varies from zero to one the trading frequencies of the brokers necessarily

become more concentrated.
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Figure 8: The splitting decomposition for the 102 real data samples (indicated by red x’s) compared to the
predictions of three different null hypotheses. The variance of the brokerage trading frequencies varies along
the horizontal axis. On the left the trading frequencies are equal, on the right trading is concentrated in a few
brokerages. The left vertical axis indicates the splitting ratio S(τ) = Csplit(τ)/C(τ) averaged over 1 ≤ τ ≤ 50
and the right vertical axis indicates the broker-neighbor correlation Φ (for the generalized imitation model only).
The null hypotheses are generated by combining a model for investor herding with a model of brokerage. The
blue circles represent simulations of the generalized imitation model with Fixed Random Brokerage (FRB).
The black curve is the public information model (with Φ = 0) and Fixed Random Brokerage; alternatively it
represents the prediction of the Dynamically Random Brokerage (DRB) model under any investor model. All
102 samples are outside the range predicted by any of the three null hypotheses.

of S in the center of the distribution of real values require Φ ≈ 1, which seems absurdly high,
and more than half of the values of S cannot be reached at all, indicating that this scenario
cannot explain the data.

5.3.3. Any investor model/dynamic random brokerage

As already discussed, if investors randomly pick their brokers, with no allegiance to any bro-
ker, the investor’s behavior is irrelevant, and the properties of the decomposition are determined
entirely by the brokerage trading frequencies. The prediction under this scenario is represented
by the solid black curve in Figure 8. This is the same as the public information/fixed random
brokerage scenario. The data are very well-separated from the predictions, indicating that this
scenario cannot explain the data.

5.3.4. Order splitting/partially random brokerage

What about order splitting? As already discussed in the introduction, the order splitting
model of Lillo et al. (2005) is capable of matching the empirical autocorrelation C(τ) quite
well. The splitting ratio of this model is S(τ) = 1, independent of τ and independent of
the brokerage map. This ratio is too high for τ ≤ 5, where S ≈ 0.7. This could be due to
one of two reasons, that we cannot distinguish: (1) Some short term herding behavior or (2)
partially dynamic brokerage choice. By this we mean that some investors (but not others)
might randomly vary their brokers, or investors might have partial allegiance to a small set of
brokers, randomly choosing between them but avoiding the others. As the magnitude of the
random choice increases so does the herding component, and as we know from the previous
scenario, unless a single brokerage dominates the trading (which is not the case for the real
data), this strongly distorts the decomposition in favor of herding.
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For τ ≥ 10 the splitting ratio S(τ) = 1 predicted under the order splitting scenario is
actually too low, due to anti-herding. We present a few clues about anti-herding in the next
section.

For the combinations of herding and brokerage models considered here the distortion caused
by broker maps cannot explain the empirical dominance of splitting over herding. We can thus
be confident that there are no reasonable circumstances in which the distortion introduced by
the use of brokerage data could plausibly be large enough to be consistent with the empirical
results.

6. Clues about the cause of anti-herding

As we have shown in Section 4.1, the herding component of the order flow autocorrelation
is often negative for τ > 10. This implies that buying by one investor tends to invoke selling
by other investors, a phenomenon that gives the appearance of “anti-herding”. In this sec-
tion we first test the statistical significance of anti-herding and then perform some empirical
investigations that give a clue as to its origin.

6.1. Anti-herding is statistically significant

To assess whether anti-herding is statistically significant we perform a one-sided significance
test by comparing the real data to the null hypothesis that both the signs and brokerage codes
are assigned randomly. Realizations of this null hypothesis are obtained by randomly shuffling
both the signs and brokerage codes. For each of the 102 datasets we produced 106 realizations of
the null hypothesis, and for each realization we computed the splitting and herding components
of the autocorrelation. Then for each lag τ we estimated the fraction of random realizations
having a herding component smaller than the value observed in the corresponding real sample.
If this fraction is smaller than 5%, we reject the one-sided null hypothesis. Figure 9 shows the
fraction of sets for which we reject the null hypothesis. For small values of τ we never reject the
hypothesis because the real herding component of the autocorrelation function is significantly
positive (as we have seen above). For values of τ between roughly 15 and 80 we reject the
null hypothesis in approximately 80% of the sets. This means that for these lag values the
real herding component of the autocorrelation is statistically significantly negative and thus
anti-herding is statistical significant. We now explore the possible origin of this phenomenon.

6.2. What underlies “anti-herding”?

We now show that anti-herding is associated with a difference in the response of brokers to
market orders, depending on whether or not the order changes the price and whether or not it
is from the same or a different broker. If a market order placed by broker i changes the price,
broker j is less likely to place market orders in the same direction, while the behavior of broker
i is unchanged17.

We use the notation MO0
t for a market order at time t that does not change the price and

MO′t for a market order that changes the price. Conditioned on either of these events, the
probabilities for subsequent market orders to have the same sign are

P (εt = εt+τ | MO0
t )

P (εt = εt+τ | MO′t) (16)

Assuming that on average buy and sell trades have the same size and that brokers’ inventories
are bounded, these probabilities for large τ should converge to the unconditional probability

17 Our guess that whether or not a market order changes the price is an important determinant of the behavior
was inspired in part by a previous study by Eisler et al. (2011b); see also Toth et al. (2011a).
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Figure 9: The fraction of the 102 data sets for which the herding component of the autocorrelation Cherd has
a p value less than 5% under the IID null hypothesis.

P (εt) = 1/2. In Figure 10 these are shown for AZN, plotted as a function of τ on a double
logarithmic scale. To make the τ dependence clearer, we also plot the excess probabilities

P̃ 0(τ) ≡ P (εt = εt+τ | MO0
t )− 1/2

P̃ ′(τ) ≡ P (εt = εt+τ | MO′t)− 1/2.

The decay of both P̃ 0 and P̃ ′ is approximately a power law. However, when the original market
order changes the price, the decay is faster. This means that, all else being equal, when a
market order does not change the price the persistence of the sign of subsequent orders is much
stronger than when it does change the price.

We now study how the identity of the broker affects this behavior. We look at the probability
that the signs of the orders at t and t+τ are the same, conditioned on whether they were placed
by the same broker and also on whether the event at t changed the price or not. We study the
following probabilities:

P (εit = εjt+τ | i = j ; MO0
t ) P (εit = εjt+τ | i 6= j ; MO0

t )

P (εit = εjt+τ | i = j ; MO′t) P (εit = εjt+τ | i 6= j ; MO′t) (17)

In Figure 11 we plot the probabilities above on a double logarithmic scale. When the broker
at time t and t+ τ is the same there is no qualitative difference, regardless of whether the order
at time t changed the price, other than a small shift in scale.

In contrast, when different brokers place the orders at time t and t+τ , the behavior changes
dramatically. If the market order at time t does not change the price, the probability that the
signs of the two orders are the same is lower than before, but still positive. In contrast, if the
market order at time t changes the price, for most lags τ the subsequent order is more likely
to have the opposite sign. Thus, after a market order that does not change the price other
brokers tend to place their orders in the same direction, indicating a slight herding on short
time scales, but after a market order that changes the price, the opposite happens: they are
more likely to put their orders in the opposite direction, corresponding to anti-herding18.

18 The interesting point is that splitting traders seem to act like “noise traders”, i.e. they do not adapt their
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much faster. Data is for AZN for 2000-2009.
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21



●

●

●

●

●
●

● ●
●

● ● ●
● ● ●

● ● ● ● ● ● ● ● ●

no price change at t=0

ττ

C
((ττ

))

1 10 100 1000−
0.

05
0

0.
05

0.
1

● Csplit

Cherd ●

●

●

●

●

●
●

●
●

●
●

● ●
● ● ●

● ● ● ● ● ● ● ●

price change at t=0

ττ

C
((ττ

))

1 10 100 1000−
0.

05
0

0.
05

0.
1

● Csplit

Cherd

Figure 12: Splitting and herding component of the autocorrelation function of market order signs conditional
on the event at time t. The left panel is conditioned on the case where the original market order does not
change the price, and the right panel is the case where it does. The negative contribution to the herding term
is entirely due to the latter case. Data is for AZN for 2000-2009.

This is confirmed by decomposing the autocorrelation conditional on whether or not the
market order at time t changed the price, shown in Figure 12. More precisely, we apply the
herding/splitting decomposition of Eq. (9) to the conditional autocorrelations E[(εt−µ)(εt+τ −
µ)|MO0

t ] and E[(εt − µ)(εt+τ − µ)|MO′t], where µ is the mean market order sign. When the
market order at t does not change the sign, the herding component decays to zero but never
becomes very negative; in contrast, when the market order at t changes sign, it is negative for
roughly τ > 5. The shape of the herding term is qualitatively similar to the probabilities shown
in Fig. 11.

The conclusion is that the observed anti-herding effect is related to the difference in the
response of brokers to market orders placed by others, depending on whether or not they
changed the price. When a market order does not cause a price change brokers continue being
more likely to place orders of the same sign, regardless of who placed the original market order.
In contrast, if a market order triggers a price change, other brokers place fewer market orders
in the same direction than in the opposite direction.

7. Conclusions

We have shown that in the LSE the cause of long-memory on short timescales (correspond-
ing to 500 transactions or less, typically about an hour) is overwhelmingly due to autocorrelated
trading by investors (which we call splitting), rather than correlated trading by different in-
vestors (which we call herding). Our belief is that this is mainly due to single individuals who
consistently execute their large orders through at most a few brokers, splitting them into small
pieces. This is exactly what one expects from algorithmic brokerages, who take large orders,
split them into pieces and execute them throughout the day. We observe only weak herding
at short time scales, and for longer times we observe anti-herding, i.e. the trading of a given
individual is anti-correlated with that of other individuals. We are only able to obtain statis-
tically significant results for fairly short time scales of less than an hour. It is quite possible
that herding is a stronger factor on longer timescales.

The analysis we have performed is based on data identifying the members of the exchange,

behavior to their own impact. The reason for this could be that they have already calculated their impact in
their estimates of the trading cost, so it is expected. The same effect is also mentioned by Toth et al. (2011a).
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who often act as brokers for other investors. In order to understand whether these results
apply to investors, we developed a set of models for investor behavior and choice of broker.
We then combined these into scenarios of investor behavior/brokerage, and used these as null
hypotheses. The decomposition of order flow under these null hypotheses is then compared to
the data. Even though our analysis was done at the level of brokers, we are able to show that
the qualitative conclusion that splitting dominates herding applies at the level of investors as
well.

This behavior is extremely consistent across different stocks and time periods. It is also fairly
consistent across member firms. While a few member firms have less directional persistence
than others, the vast majority are quite persistent, and in an almost identical way. Furthermore
the persistence exhibits itself similarly in both trading direction and trading activity.

Under the interpretation that the strong positive autocorrelation of investors is due to order
splitting, the fact that investors split their orders so strongly implies that the market is in a
certain sense typically out of equilibrium. That is, if investors revealed their intentions when
they made decisions, rather than concealing their intentions and trading gradually, prices at
any given moment might be substantially different.
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